
Accessible Rich Internet Applications
(WAI-ARIA) 1.2
W3C Recommendation 06 June 2023

▾ More details about this document

This version:
https://www.w3.org/TR/2023/REC-wai-aria-1.2-20230606/

Latest published version:
https://www.w3.org/TR/wai-aria-1.2/

Latest editor's draft:
https://w3c.github.io/aria/

History:
https://www.w3.org/standards/history/wai-aria-1.2
Commit history

Implementation report:
https://w3c.github.io/test-results/core-aam-1.2/

Previous Recommendation:
https://www.w3.org/TR/wai-aria-1.1/

Editors:
Joanmarie Diggs (Igalia, S.L.)
James Nurthen (Adobe)
Michael Cooper (W3C)
Carolyn MacLeod (IBM)

Former editors:
Shane McCarron (Spec-Ops) (Editor until 2018)
Richard Schwerdtfeger (Knowbility) (Editor until October 2017)
James Craig (Apple Inc.) (Editor until May 2016)

Feedback:
GitHub w3c/aria (pull requests, new issue, open issues)

Errata:
Errata exists.

See also translations.

Copyright © 2013-2023 World Wide Web Consortium. W3C® liability, trademark and permissive document license rules apply.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

1 of 298 27/08/2025, 04:00

https://www.w3.org/
https://www.w3.org/
https://www.w3.org/standards/types#REC
https://www.w3.org/standards/types#REC
https://www.w3.org/TR/2023/REC-wai-aria-1.2-20230606/
https://www.w3.org/TR/2023/REC-wai-aria-1.2-20230606/
https://www.w3.org/TR/wai-aria-1.2/
https://www.w3.org/TR/wai-aria-1.2/
https://w3c.github.io/aria/
https://w3c.github.io/aria/
https://www.w3.org/standards/history/wai-aria-1.2
https://www.w3.org/standards/history/wai-aria-1.2
https://github.com/w3c/aria/commits/2022-12_PR
https://github.com/w3c/aria/commits/2022-12_PR
https://w3c.github.io/test-results/core-aam-1.2/
https://w3c.github.io/test-results/core-aam-1.2/
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/
https://www.igalia.com/
https://www.igalia.com/
https://www.adobe.com/
https://www.adobe.com/
https://www.w3.org/
https://www.w3.org/
http://www.ibm.com/
http://www.ibm.com/
https://www.knowbility.org/
https://www.knowbility.org/
https://www.apple.com/accessibility
https://www.apple.com/accessibility
https://github.com/w3c/aria/
https://github.com/w3c/aria/
https://github.com/w3c/aria/pulls/
https://github.com/w3c/aria/pulls/
https://github.com/w3c/aria/issues/new/choose
https://github.com/w3c/aria/issues/new/choose
https://github.com/w3c/aria/issues/
https://github.com/w3c/aria/issues/
https://www.w3.org/WAI/ARIA/1.2/errata/aria.html
https://www.w3.org/WAI/ARIA/1.2/errata/aria.html
https://www.w3.org/Translations/?technology=wai-aria-1.2
https://www.w3.org/Translations/?technology=wai-aria-1.2
https://www.w3.org/Translations/?technology=wai-aria-1.2
https://www.w3.org/Consortium/Legal/ipr-notice#Copyright
https://www.w3.org/Consortium/Legal/ipr-notice#Copyright
https://www.w3.org/
https://www.w3.org/
https://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
https://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
https://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
https://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
https://www.w3.org/Consortium/Legal/2015/copyright-software-and-document

Abstract

Accessibility of web content requires semantic information about widgets, structures, and behaviors, in order
to allow assistive technologies to convey appropriate information to persons with disabilities. This
specification provides an ontology of roles, states, and properties that define accessible user interface
elements and can be used to improve the accessibility and interoperability of web content and applications.
These semantics are designed to allow an author to properly convey user interface behaviors and structural
information to assistive technologies in document-level markup. This version adds features new since WAI-
ARIA 1.1 [wai-aria-1.1] to improve interoperability with assistive technologies to form a more consistent
accessibility model for [HTML] and [SVG2]. This specification complements both [HTML] and [SVG2].

This document is part of the WAI-ARIA suite described in the WAI-ARIA Overview.

Status of This Document

This section describes the status of this document at the time of its publication. A list of current W3C
publications and the latest revision of this technical report can be found in the W3C technical reports index
at https://www.w3.org/TR/.

WAI-ARIA 1.2 is a W3C Recommendation. The Advisory Committee (AC) as well as the W3C Director
have endorsed this specification to become a W3C Recommendation. For details about implementation
experience, see the WAI-ARIA 1.2 Implementation Report. A history of changes to WAI-ARIA 1.2 is
available in the appendix.

This document was published by the Accessible Rich Internet Applications Working Group as a
Recommendation using the Recommendation track.

W3C recommends the wide deployment of this specification as a standard for the Web.

A W3C Recommendation is a specification that, after extensive consensus-building, is endorsed by W3C and
its Members, and has commitments from Working Group members to royalty-free licensing for
implementations.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a public list
of any patent disclosures made in connection with the deliverables of the group; that page also includes
instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual
believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

This document is governed by the 2 November 2021 W3C Process Document.

Table of Contents

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

2 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/intro/aria.php
https://www.w3.org/WAI/intro/aria.php
https://www.w3.org/WAI/intro/aria.php
https://www.w3.org/WAI/intro/aria.php
https://www.w3.org/TR/
https://www.w3.org/TR/
https://www.w3.org/TR/
https://www.w3.org/TR/
https://w3c.github.io/test-results/core-aam-1.2/
https://w3c.github.io/test-results/core-aam-1.2/
https://w3c.github.io/test-results/core-aam-1.2/
https://w3c.github.io/test-results/core-aam-1.2/
https://www.w3.org/groups/wg/aria
https://www.w3.org/groups/wg/aria
https://www.w3.org/2021/Process-20211102/#recs-and-notes
https://www.w3.org/2021/Process-20211102/#recs-and-notes
https://www.w3.org/Consortium/Patent-Policy/#sec-Requirements
https://www.w3.org/Consortium/Patent-Policy/#sec-Requirements
https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/groups/wg/aria/ipr
https://www.w3.org/groups/wg/aria/ipr
https://www.w3.org/groups/wg/aria/ipr
https://www.w3.org/groups/wg/aria/ipr
https://www.w3.org/Consortium/Patent-Policy/#def-essential
https://www.w3.org/Consortium/Patent-Policy/#def-essential
https://www.w3.org/Consortium/Patent-Policy/#sec-Disclosure
https://www.w3.org/Consortium/Patent-Policy/#sec-Disclosure
https://www.w3.org/Consortium/Patent-Policy/#sec-Disclosure
https://www.w3.org/Consortium/Patent-Policy/#sec-Disclosure
https://www.w3.org/Consortium/Patent-Policy/#sec-Disclosure
https://www.w3.org/Consortium/Patent-Policy/#sec-Disclosure
https://www.w3.org/2021/Process-20211102/
https://www.w3.org/2021/Process-20211102/
https://www.w3.org/2021/Process-20211102/
https://www.w3.org/2021/Process-20211102/
https://www.w3.org/2021/Process-20211102/

1.
1.1
1.2
1.3
1.4
1.5
1.5.1
1.5.2
1.6

2.

3.
3.1
3.2
3.3
3.4
3.5

4.
4.1
4.2
4.3
4.3.1
4.3.2

5.
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4

Abstract

Status of This Document

Introduction
Rich Internet Application Accessibility
Target Audience
User Agent Support
Co-Evolution of WAI-ARIA and Host Languages
Authoring Practices

Authoring Tools
Testing Practices and Tools

Assistive Technologies

Important Terms

Conformance
Non-interference with the Host Language
All WAI-ARIA in DOM
Assistive Technology Notifications Communicated to Web Applications
Conformance Checkers
Deprecated Requirements

Using WAI-ARIA
WAI-ARIA Roles
WAI-ARIA States and Properties
Managing Focus and Supporting Keyboard Navigation

Information for Authors
Information for User Agents

The Roles Model
Relationships Between Concepts

Superclass Role
Subclass Roles
Related Concepts
Base Concept

Characteristics of Roles
Abstract Roles
Required States and Properties
Supported States and Properties
Inherited States and Properties

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

3 of 298 27/08/2025, 04:00

5.2.5
5.2.6
5.2.7
5.2.8
5.2.8.1

5.2.8.2

5.2.8.3

5.2.8.4

5.2.8.5

5.2.8.6

5.2.9
5.2.10
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.4

6.
6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.4.1

6.4
6.5
6.6
6.6.1
6.6.2
6.6.3
6.6.4

Prohibited States and Properties
Required Owned Elements
Required Context Role
Accessible Name Calculation

Name Computation

Description Computation

Accessible Name and Description Computation

Roles Supporting Name from Author

Roles Supporting Name from Content

Roles which cannot be named (Name prohibited)

Presentational Children
Implicit Value for Role

Categorization of Roles
Abstract Roles
Widget Roles
Document Structure Roles
Landmark Roles
Live Region Roles
Window Roles

Definition of Roles

Supported States and Properties
Clarification of States versus Properties
Characteristics of States and Properties

Related Concepts
Used in Roles
Inherits into Roles
Value

ARIA Attributes
Multi-value Attribute Values
IDL reflection of ARIA attributes
Operating System Accessibility API mapping of multi-value ARIA attributes
ARIA nullable DOMString Attributes

Example Attribute Usage

Translatable States and Properties
Global States and Properties
Taxonomy of WAI-ARIA States and Properties

Widget Attributes
Live Region Attributes
Drag-and-Drop Attributes
Relationship Attributes

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

4 of 298 27/08/2025, 04:00

6.7

7.
7.1
7.2

8.
8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.7

9.
9.1
9.2

10.
10.1
10.2
10.2.1
10.2.2
10.3
10.4

11.

A.

B.

C.
C.1
C.2
C.3

D.
D.1
D.2

Definitions of States and Properties (all aria-* attributes)

Accessibility Tree
Excluding Elements from the Accessibility Tree
Including Elements in the Accessibility Tree

Implementation in Host Languages
Role Attribute
State and Property Attributes
Focus Navigation
Implicit WAI-ARIA Semantics
Conflicts with Host Language Semantics
State and Property Attribute Processing

ID Reference Error Processing
CSS Selectors

Handling Author Errors
Roles
States and Properties

IDL Interface
Interface Mixin ARIAMixin
ARIA Attribute Correspondence

Disambiguation Pattern
IDL Attribute Name Notes or Exceptions

ARIAMixin Mixed in to Element
Example IDL Attribute Usage

Privacy and Security Considerations

Mapping WAI-ARIA Value types to languages

Substantive changes since the WAI-ARIA 1.1 Recommendation

Acknowledgments
Participants active in the ARIA WG at the time of publication
Other ARIA contributors, commenters, and previously active participants
Enabling funders

References
Normative references
Informative references

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

5 of 298 27/08/2025, 04:00

This version of the ARIA specification is dedicated to the memory of Carolyn MacLeod whose contributions
are found throughout this document. She graced our work with equanimity and sagacity, and her untimely
passing will long be missed by our community.

This section is non-normative.

The goals of this specification include:

• expanding the accessibility information that may be supplied by the author;

• requiring that supporting host languages provide full keyboard support that may be implemented in a
device-independent way, for example, by telephones, handheld devices, e-book readers, and televisions;

• improving the accessibility of dynamic content generated by scripts; and

• providing for interoperability with assistive technologies.

WAI-ARIA is a technical specification that provides a framework to improve the accessibility and
interoperability of web content and applications. This document is primarily for developers creating custom
widgets and other web application components. Please see the WAI-ARIA Overview for links to related
documents for other audiences, such as WAI-ARIA Authoring Practices [WAI-ARIA-PRACTICES-1.2] that
introduces developers to the accessibility problems that WAI-ARIA is intended to solve, the fundamental
concepts, and the technical approach of WAI-ARIA.

This document currently handles two aspects of roles: user interface functionality and structural relationships.
For more information and use cases, see WAI-ARIA Authoring Practices [WAI-ARIA-PRACTICES-1.2] for
the use of roles in making interactive content accessible.

Roles defined by this specification are designed to support the roles used by platform accessibility APIs.
Declaration of these roles on elements within dynamic web content is intended to support interoperability
between the web content and assistive technologies that utilize accessibility APIs.

The schema to support this standard has been designed to be extensible so that custom roles can be created by
extending base roles. This allows user agents to support at least the base role, and user agents that support the
custom role can provide enhanced access. Note that much of this could be formalized in
[XMLSCHEMA11-2]. However, being able to define similarities between roles, such as baseConcepts and

Dedication

1. Introduction

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

6 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/intro/aria
https://www.w3.org/WAI/intro/aria
https://www.w3.org/WAI/intro/aria
https://www.w3.org/WAI/intro/aria
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

more descriptive definitions, would not be available in XSD.

WAI-ARIA 1.2 is a member of the WAI-ARIA 1.2 suite that defines how to expose semantics of WAI-ARIA
and other web content languages to accessibility APIs.

The domain of web accessibility defines how to make web content usable by persons with disabilities.
Persons with certain types of disabilities use assistive technologies (AT) to interact with content. Assistive
technologies can transform the presentation of content into a format more suitable to the user, and can allow
the user to interact in different ways. For example, the user may need to, or choose to, interact with a slider
widget via arrow keys, instead of dragging and dropping with a mouse. In order to accomplish this
effectively, the software needs to understand the semantics of the content. Semantics is the science of
meaning; in this case, used to assign roles, states, and properties that apply to user interface and content
elements as a human would understand. For instance, if a paragraph is semantically identified as such,
assistive technologies can interact with it as a unit separable from the rest of the content, knowing the exact
boundaries of that paragraph. An adjustable range slider or collapsible list (a.k.a. a tree widget) are more
complex examples, in which various parts of the widget have semantics that need to be properly identified for
assistive technologies to support effective interaction.

New technologies often overlook semantics required for accessibility, and new authoring practices often
misuse the intended semantics of those technologies. Elements that have one defined meaning in the language
are used with a different meaning intended to be understood by the user.

For example, web application developers create collapsible tree widgets in HTML using CSS and JavaScript
even though HTML has no semantic tree element. To a non-disabled user, it may look and act like a
collapsible tree widget, but without appropriate semantics, the tree widget may not be perceivable to, or
operable by, a person with a disability because assistive technologies may not recognize the role. Similarly,
web application developers create interactive button widgets in SVG using JavaScript even though SVG has
no semantic button element. To a non-disabled user, it may look and act like a button widget, but without
appropriate semantics, the button widget may not be perceivable to, or operable by, a person with a disability
because assistive technologies may not recognize the role.

The incorporation of WAI-ARIA is a way for an author to provide proper semantics for custom widgets to
make these widgets accessible, usable, and interoperable with assistive technologies. This specification
identifies the types of widgets and structures that are commonly recognized by accessibility products, by
providing an ontology of corresponding roles that can be attached to content. This allows elements with a
given role to be understood as a particular widget or structural type regardless of any semantics inherited
from the implementing host language. Roles are a common property of platform accessibility APIs which
assistive technologies use to provide the user with effective presentation and interaction.

1.1 Rich Internet Application Accessibility

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

7 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/intro/aria
https://www.w3.org/WAI/intro/aria
https://www.w3.org/WAI/intro/aria
https://www.w3.org/WAI/intro/aria

The Roles Model includes interaction widgets and elements denoting document structure. The Roles Model
describes inheritance and details the attributes each role supports. Information about mapping of roles to
accessibility APIs is provided by the Core Accessibility API Mappings [CORE-AAM-1.2].

Roles are element types and will not change with time or user actions. Role information is used by assistive
technologies, through interaction with the user agent, to provide normal processing of the specified element
type.

States and properties are used to declare important attributes of an element that affect and describe
interaction. They enable the user agent and operating system to properly handle the element even when the
attributes are dynamically changed by client-side scripts. For example, alternative input and output
technology, such as screen readers and speech dictation software, need to be able to recognize and effectively
manipulate and communicate various interaction states (e.g., disabled, checked) to the user.

While it is possible for assistive technologies to access these properties directly through the Document Object
Model [DOM], the preferred mechanism is for the user agent to map the states and properties to the
accessibility API of the operating system. See the Core Accessibility API Mappings [CORE-AAM-1.2] and
the Accessible Name and Description Computation [ACCNAME-1.2] for details.

Figure 1.0 illustrates the relationship between user agents (e.g., browsers), accessibility APIs, and assistive
technologies. It describes the "contract" provided by the user agent to assistive technologies, which includes
typical accessibility information found in the accessibility API for many of our accessible platforms for GUIs
(role, state, selection, event notification, relationship information, and descriptions). The DOM, usually
HTML, acts as the data model and view in a typical model-view-controller relationship, and JavaScript acts
as the controller by manipulating the style and content of the displayed data. The user agent conveys relevant
information to the operating system's accessibility API, which can be used by any assistive technologies,
such as screen readers.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

8 of 298 27/08/2025, 04:00

https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/accname-1.2/
https://www.w3.org/TR/accname-1.2/

Figure 1: The contract model with accessibility APIs

For more information see WAI-ARIA Authoring Practices for the use of roles in making interactive content
accessible.

Users of alternate input devices need keyboard accessible content. The new semantics, when combined with
the recommended keyboard interactions provided in WAI-ARIA Authoring Practices, will allow alternate
input solutions to facilitate command and control via an alternate input solution.

WAI-ARIA introduces navigational landmarks through its Roles Model and the XHTML role landmarks,
which can help persons with dexterity and vision impairments by providing for improved keyboard
navigation. WAI-ARIA may also be used to assist persons with cognitive learning disabilities. The additional
semantics allow authors to restructure and substitute alternative content as needed.

Assistive technologies need the ability to support alternative inputs by getting and setting the current value of
widget states and properties. Assistive technologies also need to determine what objects are selected and
manage widgets that allow multiple selections, such as list boxes and grids.

Speech-based command and control systems can benefit from WAI-ARIA semantics like the role attribute
to assist in conveying audio information to the user. For example, upon encountering an element with a role
of menu with child elements of role menuitem each containing text content representing a different flavor, a
speech system might state to the user, "Select one of three choices: chocolate, strawberry, or vanilla."

WAI-ARIA is intended to be used as a supplement for native language semantics, not a replacement. When
the host language provides a feature that provides equivalent accessibility to the WAI-ARIA feature, use the
host language feature. WAI-ARIA should only be used in cases where the host language lacks the needed

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

9 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

role, state, and property indicators. Use a host language feature that is as similar as possible to the WAI-
ARIA feature, then refine the meaning by adding WAI-ARIA. For instance, a multi-selectable grid could be
implemented as a table, and then WAI-ARIA used to clarify that it is an interactive grid, not just a static data
table. This allows for the best possible fallback for user agents that do not support WAI-ARIA and preserves
the integrity of the host language semantics.

This specification defines the basic model for WAI-ARIA, including roles, states, properties, and values. It
impacts several audiences:

• User agents that process content containing WAI-ARIA features;

• Assistive technologies that present content in special ways to user with disabilities;

• Authors who create content;

• Authoring tools that help authors create conforming content; and

• Conformance checkers that verify appropriate use of WAI-ARIA.

Each conformance requirement indicates the audience to which it applies.

Although this specification is applicable to the above audiences, it is not specifically targeted to, nor is it
intended to be the sole source of information for, any of these audiences. The following documents provide
important supporting information:

• [WAI-ARIA-PRACTICES-1.2] addresses authoring recommendations for HTML, and is also of interest
to developers of authoring tools and conformance checkers.

• [CORE-AAM-1.2] addresses developers of user agents and assistive technologies.

• [ACCNAME-1.2] also addresses developers of user agents and assistive technologies.

WAI-ARIA relies on user agent support for its features in two ways:

• Mainstream user agents use WAI-ARIA to alter how host language features are exposed to accessibility
APIs in order to improve accessibility. The mechanism for this is defined in the Core Accessibility API
Mappings.

1.2 Target Audience

1.3 User Agent Support

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

10 of 298 27/08/2025, 04:00

https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/

• Assistive technologies use the enhanced information available in an accessibility API, or uses the WAI-
ARIA markup directly via the DOM, to convey semantic and interaction information to the user.

Aside from using WAI-ARIA markup to improve what is exposed to accessibility APIs, user agents behave
as they would natively. Assistive technologies react to the extra information in the accessibility API as they
already do for the same information on non-web content. User agents that are not assistive technologies,
however, need do nothing beyond providing appropriate updates to the accessibility API.

The WAI-ARIA specification neither requires nor forbids user agents from enhancing native presentation and
interaction behaviors on the basis of WAI-ARIA markup. Mainstream user agents might expose WAI-ARIA
navigational landmarks (for example, as a dialog box or through a keyboard command) with the intention to
facilitate navigation for all users. User agents are encouraged to maximize their usefulness to users, including
users without disabilities.

WAI-ARIA is intended to provide missing semantics so that the intent of the author may be conveyed to
assistive technologies. Generally, authors using WAI-ARIA will provide the appropriate presentation and
interaction features. Over time, host languages may add WAI-ARIA equivalents, such as new form controls,
that are implemented as standard accessible user interface controls by the user agent. This allows authors to
use them instead of custom WAI-ARIA enabled user interface components. In this case the user agent would
support the native host language feature. Developers of host languages that implement WAI-ARIA are
advised to continue supporting WAI-ARIA semantics when they do not adversely conflict with implicit host
language semantics, as WAI-ARIA semantics more clearly reflect the intent of the author if the host language
features are inadequate to meet the author's needs.

WAI-ARIA is intended to augment semantics in supporting languages like [HTML] and [SVG2], or to be
used as an accessibility enhancement technology in other markup-based languages that do not explicitly
include support for ARIA. It clarifies semantics to assistive technologies when authors create new types of
objects, via style and script, that are not yet directly supported by the language of the page, because the
invention of new types of objects is faster than standardized support for them appears in web languages.

It is not appropriate to create objects with style and script when the host language provides a semantic
element for that type of object. While WAI-ARIA can improve the accessibility of these objects, accessibility
is best provided by allowing the user agent to handle the object natively. For example, it's better to use an h1
element in HTML than to use the heading role on a div element.

It is expected that, over time, host languages will evolve to provide semantics for objects that currently can
only be declared with WAI-ARIA. This is natural and desirable, as one goal of WAI-ARIA is to help
stimulate the emergence of more semantic and accessible markup. When native semantics for a given feature
become available, it is appropriate for authors to use the native feature and stop using WAI-ARIA for that

1.4 Co-Evolution of WAI-ARIA and Host Languages

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

11 of 298 27/08/2025, 04:00

feature. Legacy content may continue to use WAI-ARIA, however, so the need for user agents to support
WAI-ARIA remains.

While specific features of WAI-ARIA may lose importance over time, the general possibility of WAI-ARIA
to add semantics to web pages is expected to be a persistent need. Host languages may not implement all the
semantics WAI-ARIA provides, and various host languages may implement different subsets of the features.
New types of objects are continually being developed, and one goal of WAI-ARIA is to provide a way to
make such objects accessible, because web authoring practices often advance faster than host language
standards. In this way, WAI-ARIA and host languages both evolve together but at different rates.

Some host languages exist to create semantics for features other than the user interface. For example, SVG
expresses the semantics behind production of graphical objects, not of user interface components that those
objects may represent. Host languages might, by design, not provide native semantics that map to WAI-ARIA
features. In these cases, WAI-ARIA could be adopted as a long-term approach to add semantic information to
user interface components.

Many of the requirements in the definitions of WAI-ARIA roles, states, and properties can be checked
automatically during the development process, similar to other quality control processes used for validating
code. To assist authors who are creating custom widgets, authoring tools may compare widget roles, states,
and properties to those supported in WAI-ARIA as well as those supported in related and cross-referenced
roles, states, and properties. Authoring tools may notify authors of errors in widget design patterns, and may
also prompt developers for information that cannot be determined from context alone. For example, a
scripting library can determine the labels for the tree items in a tree view, but would need to prompt the
author to label the entire tree. To help authors visualize a logical accessibility structure, an authoring
environment might provide an outline view of a web resource based on the WAI-ARIA markup.

In both HTML and SVG, tabindex is an important way browsers support keyboard focus navigation for
implementations of WAI-ARIA; authoring and debugging tools may check to make sure tabindex values
are properly set. For example, error conditions may include cases where more than one treeitem in a tree has
a tabindex value greater than or equal to 0, where tabindex is not set on any treeitem, or where aria-
activedescendant is not defined when the element with the role tree has a tabindex value of greater
than or equal to 0.

1.5 Authoring Practices

1.5.1 Authoring Tools

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

12 of 298 27/08/2025, 04:00

The accessibility of interactive content cannot be confirmed by static checks alone. Developers of interactive
content should test for device-independent access to widgets and applications, and should verify accessibility
API access to all content and changes during user interaction.

Programmatic access to accessibility semantics is essential for assistive technologies. Most assistive
technologies interact with user agents, like other applications, through a recognized accessibility API.
Perceivable objects in the user interface are exposed to assistive technologies as accessible objects, defined
by the accessibility API interfaces. To do this properly, accessibility information – role, states, properties as
well as contextual information – needs to be accurately conveyed to the assistive technologies through the
accessibility API. When a state change occurs, the user agent provides the appropriate event notification to
the accessibility API. Contextual information, in many host languages like HTML, can be determined from
the DOM itself as it provides a contextual tree hierarchy.

While some assistive technologies interact with these accessibility APIs, others may access the content
directly from the DOM. These technologies can restructure, simplify, style, or reflow the content to help a
different set of users. Common use cases for these types of adaptations may be the aging population, persons
with cognitive impairments, or persons in environments that interfere with use of their tools. For example,
the availability of regional navigational landmarks may allow for a mobile device adaptation that shows only
portions of the content at any one time based on its semantics. This could reduce the amount of information
the user needs to process at any one time. In other situations it may be appropriate to replace a custom user
interface control with something that is easier to navigate with a keyboard, or touch screen device.

This section is non-normative.

While some terms are defined in place, the following definitions are used throughout this document.

Accessibility API
Operating systems and other platforms provide a set of interfaces that expose information about objects
and events to assistive technologies. Assistive technologies use these interfaces to get information about
and interact with those widgets. Examples of accessibility APIs are Microsoft Active Accessibility
[MSAA], Microsoft User Interface Automation [UI-AUTOMATION], MSAA with UIA Express [UIA-
EXPRESS], the Mac OS X Accessibility Protocol [AXAPI], the Linux/Unix Accessibility Toolkit [ATK]

1.5.2 Testing Practices and Tools

1.6 Assistive Technologies

2. Important Terms

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

13 of 298 27/08/2025, 04:00

https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32
https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://gnome.pages.gitlab.gnome.org/atk/
https://gnome.pages.gitlab.gnome.org/atk/

and Assistive Technology Service Provider Interface [AT-SPI], and IAccessible2 [IAccessible2].

Accessibility Subtree
An accessible object in the accessibility tree and its descendants in that tree. It does not include objects
which have relationships other than parent-child in that tree. For example, it does not include objects
linked via aria-flowto unless those objects are also descendants in the accessibility tree.

Accessibility Tree
Tree of accessible objects that represents the structure of the user interface (UI). Each node in the
accessibility tree represents an element in the UI as exposed through the accessibility API; for example,
a push button, a check box, or container.

Accessible Description
An accessible description provides additional information, related to an interface element, that
complements the accessible name. The accessible description might or might not be visually
perceivable.

Accessible Name
The accessible name is the name of a user interface element. Each platform accessibility API provides
the accessible name property. The value of the accessible name may be derived from a visible (e.g., the
visible text on a button) or invisible (e.g., the text alternative that describes an icon) property of the user
interface element. See related accessible description.

A simple use for the accessible name property may be illustrated by an "OK" button. The text "OK" is
the accessible name. When the button receives focus, assistive technologies may concatenate the
platform's role description with the accessible name. For example, a screen reader may speak "push-
button OK" or "OK button". The order of concatenation and specifics of the role description (e.g.,
"button", "push-button", "clickable button") are determined by platform accessibility APIs or assistive
technologies.

Accessible object
A node in the accessibility tree of a platform accessibility API. Accessible objects expose various states,
properties, and events for use by assistive technologies. In the context of markup languages (e.g.,
HTML and SVG) in general, and of WAI-ARIA in particular, markup elements and their attributes are
represented as accessible objects.

Activation behavior
The action taken when an event, typically initiated by users through an input device, causes an element
to fulfill a defined role. The role may be defined for that element by the host language, or by author-
defined variables, or both. The role for any given element may be a generic action, or may be unique to
that element. For example, the activation behavior of an HTML or SVG <a> element shall be to cause
the user agent to traverse the link specified in the href attribute, with the further optional parameter of
specifying the browsing context for the traversal (such as the current window or tab, a named window,
or a new window); the activation behavior of an HTML <input> element with the type attribute value
submit shall be to send the values of the form elements to an author-defined IRI by the author-defined

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

14 of 298 27/08/2025, 04:00

https://developer-old.gnome.org/libatspi/stable/
https://developer-old.gnome.org/libatspi/stable/
https://wiki.linuxfoundation.org/accessibility/iaccessible2/start
https://wiki.linuxfoundation.org/accessibility/iaccessible2/start

HTTP method.

Assistive Technologies
Hardware and/or software that:

• relies on services provided by a user agent to retrieve and render Web content

• works with a user agent or web content itself through the use of APIs, and

• provides services beyond those offered by the user agent to facilitate user interaction with web
content by people with disabilities

This definition may differ from that used in other documents.

Examples of assistive technologies that are important in the context of this document include the
following:

• screen magnifiers, which are used to enlarge and improve the visual readability of rendered text and
images;

• screen readers, which are most-often used to convey information through synthesized speech or a
refreshable Braille display;

• text-to-speech software, which is used to convert text into synthetic speech;

• speech recognition software, which is used to allow spoken control and dictation;

• alternate input technologies (including head pointers, on-screen keyboards, single switches, and
sip/puff devices), which are used to simulate the keyboard;

• alternate pointing devices, which are used to simulate mouse pointing and clicking.

Attribute
In this specification, attribute is used as it is in markup languages. Attributes are structural features
added to elements to provide information about the states and properties of the object represented by the
element.

Class
A set of instance objects that share similar characteristics.

Deprecated
A deprecated role, state, or property is one which has been outdated by newer constructs or changed
circumstances, and which may be removed in future versions of the WAI-ARIA specification. User
agents are encouraged to continue to support items identified as deprecated for backward compatibility.
For more information, see Deprecated Requirements in the Conformance section.

Desktop focus event
Event from/to the host operating system via the accessibility API, notifying of a change of input focus.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

15 of 298 27/08/2025, 04:00

DOMString
Sequence of 16-bit unsigned integers, typically interpreted as UTF-16 code units. This corresponds to
the JavaScript primitive String type.

Element
In this specification, element is used as it is in markup languages. Elements are the structural elements in
markup language that contains the data profile for objects.

Event
A programmatic message used to communicate discrete changes in the state of an object to other objects
in a computational system. User input to a web page is commonly mediated through abstract events that
describe the interaction and can provide notice of changes to the state of a document object. In some
programming languages, events are more commonly known as notifications.

Expose
Translated to platform-specific accessibility APIs as defined in the Core Accessibility API Mappings.

Graphical Document
A document containing graphic representations with user-navigable parts. Charts, maps, diagrams,
blueprints, and dashboards are examples of graphical documents. A graphical document is composed
using any combination of symbols, images, text, and graphic primitives (shapes such as circles, points,
lines, paths, rectangles, etc).

Hidden
Indicates that the element is not visible, perceivable, or interactive to any user. An element is considered
hidden if it or any one of its ancestor elements is not rendered or is explicitly hidden.

Informative
Content provided for information purposes and not required for conformance. Content required for
conformance is referred to as normative.

Keyboard Accessible
Accessible to the user using a keyboard or assistive technologies that mimic keyboard input, such as a
sip and puff tube. References in this document relate to WCAG 2.1 Guideline 2.1: Make all functionality
available from a keyboard [WCAG21].

Landmark
A type of region on a page to which the user may want quick access. Content in such a region is
different from that of other regions on the page and relevant to a specific user purpose, such as
navigating, searching, perusing the primary content, etc.

Live Region
Live regions are perceivable regions of a web page that are typically updated as a result of an external
event when user focus may be elsewhere. These regions are not always updated as a result of a user
interaction. Examples of live regions include a chat log, stock ticker, or a sport scoring section that
updates periodically to reflect game statistics. Since these asynchronous areas are expected to update

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

16 of 298 27/08/2025, 04:00

https://www.w3.org/TR/wai-aria-1.2/
https://www.w3.org/TR/wai-aria-1.2/
https://www.w3.org/TR/wai-aria-1.2/
https://www.w3.org/TR/wai-aria-1.2/
https://www.w3.org/TR/wai-aria-1.2/
https://www.w3.org/TR/WCAG21/#keyboard-accessible
https://www.w3.org/TR/WCAG21/#keyboard-accessible
https://www.w3.org/TR/WCAG21/#keyboard-accessible
https://www.w3.org/TR/WCAG21/#keyboard-accessible
https://www.w3.org/TR/WCAG21/#keyboard-accessible
https://www.w3.org/TR/WCAG21/#keyboard-accessible

outside the user's area of focus, assistive technologies such as screen readers have either been unaware
of their existence or unable to process them for the user. WAI-ARIA has provided a collection of
properties that allow the author to identify these live regions and process them: aria-live, aria-relevant,
aria-atomic, and aria-busy.

Primary Content Element
An implementing host language's primary content element, such as the body element in HTML.

Managed State
Accessibility API state that is controlled by the user agent, such as focus and selection. These are
contrasted with "unmanaged states" that are typically controlled by the author. Nevertheless, authors can
override some managed states, such as aria-posinset and aria-setsize. Many managed states have
corresponding CSS pseudo-classes, such as :focus, and pseudo-elements, such as ::selection, that are
also updated by the user agent.

Nemeth Braille
The Nemeth Braille Code for Mathematics is a braille code for encoding mathematical and scientific
notation. See Nemeth Braille on Wikipedia.

Node
Basic type of object in the DOM tree or accessibility tree. DOM nodes are further specified as Element
or Text nodes, among other types. The nodes of an accessibility tree are accessible objects.

Normative
Required for conformance. By contrast, content identified as informative or "non-normative" is not
required for conformance.

Object
In the context of user interfaces, an item in the perceptual user experience, represented in markup
languages by one or more elements, and rendered by user agents.

In the context of programming, the instantiation of one or more classes and interfaces which define the
general characteristics of similar objects. An object in an accessibility API may represent one or more
DOM objects. Accessibility APIs have defined interfaces that are distinct from DOM interfaces.

Ontology
A description of the characteristics of classes and how they relate to each other.

Operable
Usable by users in ways they can control. References in this document relate to WCAG 2.1 Principle 2:
Content must be operable [WCAG21]. See Keyboard Accessible.

Owned Element
An 'owned element' is any DOM descendant of the element, any element specified as a child via aria-
owns, or any DOM descendant of the owned child.

Owning Element

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

17 of 298 27/08/2025, 04:00

https://en.wikipedia.org/wiki/Nemeth_Braille
https://en.wikipedia.org/wiki/Nemeth_Braille
https://www.w3.org/TR/WCAG21/#operable
https://www.w3.org/TR/WCAG21/#operable
https://www.w3.org/TR/WCAG21/#operable
https://www.w3.org/TR/WCAG21/#operable
https://www.w3.org/TR/WCAG21/#operable
https://www.w3.org/TR/WCAG21/#operable

An 'owning element' is any DOM ancestor of the element, or any element with an aria-owns attribute
which references the ID of the element.

Perceivable
Presentable to users in ways they can sense. References in this document relate to WCAG 2.1 Principle
1: Content must be perceivable [WCAG21].

Property
Attributes that are essential to the nature of a given object, or that represent a data value associated with
the object. A change of a property may significantly impact the meaning or presentation of an object.
Certain properties (for example, aria-multiline) are less likely to change than states, but note that
the frequency of change difference is not a rule. A few properties, such as aria-activedescendant,
aria-valuenow, and aria-valuetext are expected to change often. See clarification of states versus
properties.

Relationship
A connection between two distinct things. Relationships may be of various types to indicate which
object labels another, controls another, etc.

Role
Main indicator of type. This semantic association allows tools to present and support interaction with
the object in a manner that is consistent with user expectations about other objects of that type.

Root WAI-ARIA node
The primary element containing non-metadata content. In many languages, this is the document element
but in HTML, it is the <body>.

Semantics
The meaning of something as understood by a human, defined in a way that computers can process a
representation of an object, such as elements and attributes, and reliably represent the object in a way
that various humans will achieve a mutually consistent understanding of the object.

State
A state is a dynamic property expressing characteristics of an object that may change in response to user
action or automated processes. States do not affect the essential nature of the object, but represent data
associated with the object or user interaction possibilities. See clarification of states versus properties.

Sub-document
Any document created from a <frame>, <iframe> or similar mechanism. A sub-document may
contain a document, an application or any widget such as a calendar pulled in from another server. In the
accessibility tree there are two accessible objects for this situation—one represents the <frame>/
<iframe> element in the parent document, which parents a single accessible object child representing
the spawned document contents.

Target Element
An element specified in a WAI-ARIA relation. For example, in <div aria-controls=”elem1”>,

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

18 of 298 27/08/2025, 04:00

https://www.w3.org/TR/WCAG21/#perceivable
https://www.w3.org/TR/WCAG21/#perceivable
https://www.w3.org/TR/WCAG21/#perceivable
https://www.w3.org/TR/WCAG21/#perceivable
https://www.w3.org/TR/WCAG21/#perceivable
https://www.w3.org/TR/WCAG21/#perceivable

where “elem1” is the ID for the target element.

Taxonomy
A hierarchical definition of how the characteristics of various classes relate to each other, in which
classes inherit the properties of superclasses in the hierarchy. A taxonomy can comprise part of the
formal definition of an ontology.

Text node
Type of DOM node that represents the textual content of an attribute or an element. A Text node has no
child nodes.

Tooltip attribute
Any host language attribute that would result in a user agent generating a tooltip such as in response to a
mouse hover in desktop user agents.

Understandable
Presentable to users in ways they can construct an appropriate meaning. References in this document
relate to WCAG 2.1 Principle 3: Information and the operation of user interface must be understandable
[WCAG21].

Unicode Braille Patterns
In Unicode, braille is represented in a block called Braille Patterns (U+2800..U+28FF). The block
contains all 256 possible patterns of an 8-dot braille cell; this includes the complete 6-dot cell range
which is represented by U+2800..U+283F. In all braille systems, the braille pattern dots-0 (U+2800) is
used to represent a space or the lack of content; it is also called a blank Braille pattern. See Braille
Patterns on Wikipedia.

User Agent
Any software that retrieves, renders and facilitates end user interaction with Web content. This definition
may differ from that used in other documents.

Valid IDREF
A reference to a target element in the same document that has a matching ID

Widget
Discrete user interface object with which the user can interact. Widgets range from simple objects that
have one value or operation (e.g., check boxes and menu items), to complex objects that contain many
managed sub-objects (e.g., trees and grids).

The main content of Accessible Rich Internet Applications is normative and defines requirements that impact
conformance claims. Introductory material, appendices, sections marked as "non-normative" and their

3. Conformance

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

19 of 298 27/08/2025, 04:00

https://www.w3.org/TR/WCAG21/#understandable
https://www.w3.org/TR/WCAG21/#understandable
https://www.w3.org/TR/WCAG21/#understandable
https://www.w3.org/TR/WCAG21/#understandable
https://en.wikipedia.org/wiki/Braille_Patterns
https://en.wikipedia.org/wiki/Braille_Patterns
https://en.wikipedia.org/wiki/Braille_Patterns
https://en.wikipedia.org/wiki/Braille_Patterns

subsections, diagrams, examples, and notes are informative (non-normative). Non-normative material
provides advisory information to help interpret the guidelines but does not create requirements that impact a
conformance claim.

Normative sections provide requirements that user agents must follow for an implementation to conform to
this specification. The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in Keywords
for use in RFCs to indicate requirement levels [RFC2119]. RFC-2119 keywords are formatted in uppercase
and contained in an element with class="rfc2119". When the keywords shown above are used, but do not
share this format, they do not convey formal information in the RFC 2119 sense, and are merely explanatory,
i.e., informative. As much as possible, such usages are avoided in this specification.

Normative sections provide requirements that authors, user agents and assistive technologies MUST follow
for an implementation to conform to this specification.

Non-normative (informative) sections provide information useful to understanding the specification. Such
sections may contain examples of recommended practice, but it is not required to follow such
recommendations in order to conform to this specification.

WAI-ARIA processing by the user agent MUST NOT interfere with the normal operation of the built-in
features of the host language.

If a CSS selector includes a WAI-ARIA attribute (e.g.,

input[aria-invalid="true"]

), user agents MUST update the visual display of any elements matching (or no longer matching) the selector
any time the attribute is added/changed/removed in the DOM. The user agent MAY alter the mapping of the
host language features into an accessibility API, but the user agent MUST NOT alter the DOM in order to
remap WAI-ARIA markup into host language features.

A conforming user agent which implements a document object model that does not conform to the W3C
DOM specification MUST include the content attribute for role and its WAI-ARIA role values, as well as the
WAI-ARIA States and Properties in the DOM as specified by the author, even though processing may affect
how the elements are exposed to accessibility APIs. Doing so ensures that each role attribute and all WAI-
ARIA states and properties, including their values, are in the document in an unmodified form so other tools,

3.1 Non-interference with the Host Language

3.2 All WAI-ARIA in DOM

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

20 of 298 27/08/2025, 04:00

http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt

such as assistive technologies, can access them. A conforming W3C DOM meets this criterion.

Assistive technologies, such as speech recognition systems and alternate input devices for users with mobility
impairments, require the ability to control a web application in a device-independent way. WAI-ARIA states
and properties reflect the current state of rich internet application components. The ability for assistive
technologies to notify web applications of necessary changes is essential because it allows these alternative
input solutions to control an application without being dependent on the standard input device which the user
is unable to effectively control directly.

User agents MUST provide a method to notify the web application when a change occurs to states or
properties in the system accessibility API. Likewise, web application authors SHOULD update the web
application accordingly when notified of a change request from the user agent or assistive technology.

NOTE

Many state and properties can be changed by assistive technologies through existing accessibility APIs
by responding to a default action event. For example, the aria-selected state of a tab in a tabpanel
can be changed by triggering the default action on the element.

Any application or script verifying document conformance or validity SHOULD include a test for all of the
normative author requirements in this specification. If testing for a given requirement, conformance checkers
MUST issue an error if an author "MUST" requirement isn't met, and MUST issue a warning if an author
"SHOULD" requirement isn't met.

As the technology evolves, sometimes new ways to meet a use case become available, that work better than a
feature that was previously defined. But because of existing implementation of the older feature, that feature
cannot be removed from the conformance model without rendering formerly conforming content non-
conforming. In this case, the older feature is marked as "deprecated". This indicates that the feature is
allowed in the conformance model and expected to be supported by user agents, but it is recommended that

3.3 Assistive Technology Notifications Communicated to Web Applications

3.4 Conformance Checkers

3.5 Deprecated Requirements

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

21 of 298 27/08/2025, 04:00

authors do not use it for new content. In future versions of the specification, if the feature is no longer widely
used, the feature could be removed and no longer expected to be supported by user agents.

Complex web applications become inaccessible when assistive technologies cannot determine the semantics
behind portions of a document or when the user is unable to effectively navigate to all parts of it in a usable
way (see WAI-ARIA Authoring Practices). WAI-ARIA divides the semantics into roles (the type defining a
user interface element) and states and properties supported by the roles.

Authors need to associate elements in the document to a WAI-ARIA role and the appropriate states and
properties (aria-* attributes) during its life-cycle, unless the elements already have the appropriate implicit
WAI-ARIA semantics for states and properties. In these instances the equivalent host language states and
properties take precedence to avoid a conflict while the role attribute will take precedence over the implicit
role of the host language element.

A WAI-ARIA role is set on an element using a role attribute, similar to the role attribute defined in Role
Attribute [ROLE-ATTRIBUTE].

The definition of each role in the model provides the following information :

• an informative description of the role;

• hierarchical information about related roles (e.g., a searchbox is a type of textbox);

• context of the role (e.g., a listitem is contained inside a list);

• references to related concepts in other specifications;

• supported states and properties for each role (e.g., a checkbox supports being checked via aria-
checked).

Attaching a role gives assistive technologies information about how to handle each element. When WAI-

4. Using WAI-ARIA

4.1 WAI-ARIA Roles

EXAMPLE 1

<llii role="menuitem">Open file…</llii>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

22 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/

ARIA roles override host language semantics, there are no changes in the DOM, only in the accessibility
tree.

User agents MUST use the first token in the sequence of tokens in the role attribute value that matches the
name of any non-abstract WAI-ARIA role. The following steps will correctly identify the applicable WAI-
ARIA role:

1. Use the rules of the host language to detect that an element has a role attribute and to identify the
attribute value string for it.

2. Separate the attribute value string for that attribute into a sequence of whitespace-free substrings by
separating on whitespace.

3. Compare the substrings to all the names of the non-abstract WAI-ARIA roles. Case-sensitivity of the
comparison inherits from the case-sensitivity of the host language.

4. Use the first such substring in textual order that matches the name of a non-abstract WAI-ARIA role.

WAI-ARIA provides a collection of accessibility states and properties which are used to support platform
accessibility APIs on various operating system platforms. Assistive technologies may access this information
through an exposed user agent DOM or through a mapping to the platform accessibility API. When
combined with roles, the user agent can supply the assistive technologies with user interface information to
convey to the user at any time. Changes in states or properties will result in a notification to assistive
technologies, which could alert the user that a change has occurred.

In the following example, a list item (html:li) has been used to create a checkable menu item, and
JavaScript events will capture mouse and keyboard events to toggle the value of aria-checked. A role is
used to make the behavior of this simple widget known to the user agent. Attributes that change with user
actions (such as aria-checked) are defined in the states and properties section.

Some accessibility states, called managed states, are controlled by the user agent. Examples of managed state
include keyboard focus and selection. Managed states often have corresponding CSS pseudo-classes (such as
:focus and ::selection) to define style changes. In contrast, the states in this specification are typically
controlled by the author and are called unmanaged states. Some states are managed by the user agent, such as
aria-posinset and aria-setsize, but the author can override them if the DOM is incomplete and would

4.2 WAI-ARIA States and Properties

EXAMPLE 2

<llii role="menuitemcheckbox" aria-checked="true">Sort by Last Modified</llii>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

23 of 298 27/08/2025, 04:00

cause the user agent calculation to be incorrect. User agents map both managed and unmanaged states to the
platform accessibility APIs.

Most modern user agents support CSS attribute selectors ([CSS3-SELECTORS]), and can allow the author to
create UI changes based on WAI-ARIA attribute information, reducing the amount of scripts necessary to
achieve equivalent functionality. In the following example, a CSS selector is used to determine whether or
not the text is bold and an image of a check mark is shown, based on the value of the aria-checked
attribute.

If CSS is not used to toggle the visual representation of the check mark, the author could include additional
markup and scripts to manage an image that represents whether or not the menuitemcheckbox is checked.

When using standard HTML interactive elements and simple WAI-ARIA widgets, application developers can
manipulate the tab order or associate keyboard shortcuts with elements in the document.

WAI-ARIA includes a number of "managing container" widgets, also known as "composite" widgets. When
appropriate, the container is responsible for tracking the last descendant that was active (the default is usually
the first item in the container). It is essential that a container maintain a usable and consistent strategy when
focus leaves a container and is then later refocused. While there may be exceptions, it is recommended that
when a previously focused container is refocused, the active descendant be the same element as the active
descendant when the container was last focused. Exceptions include cases where the contents of a container
widget have changed, and widgets like a menubar where the user expects to always return to the first item
when focus leaves the menu bar. For example, if the second item of a tree group was the active descendant
when the user tabbed out of the tree group, then the second item of the tree group remains the active

EXAMPLE 3

[aria-checked="true"] { font-weight: bold; }
[aria-checked="true"]::before { background-image: url(checked.gif); }

EXAMPLE 4

<llii role="menuitemcheckbox" aria-checked="true">
<iimmgg src="checked.gif" role="presentation" alt="">
<!-- note: additional scripts required to toggle image source -->

 Sort by Last Modified
</llii>

4.3 Managing Focus and Supporting Keyboard Navigation

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

24 of 298 27/08/2025, 04:00

https://www.w3.org/TR/css3-selectors/#attribute-selectors
https://www.w3.org/TR/css3-selectors/#attribute-selectors
https://www.w3.org/TR/css3-selectors/#attribute-selectors
https://www.w3.org/TR/css3-selectors/#attribute-selectors

descendant when the tree group gets focus again. The user may also activate the container by clicking on one
of the descendants within it. When the container or its active descendant has focus, the user may navigate
through the container by pressing additional keys, such as the arrow keys, to change the currently active
descendant. Any additional press of the main navigation key (generally the TAB key) will move out of the
container to the next widget.

Usable keyboard navigation in a rich internet application is different from the tabbing paradigm among
interactive elements, such as links and form controls, in a static document. In rich internet applications, the
user tabs to significantly complex widgets, such as a menu or spreadsheet, and uses the arrow keys to
navigate within the widget. The changes that WAI-ARIA introduces to keyboard navigation make this
enhanced accessibility possible. In WAI-ARIA, any element can be keyboard focusable. In addition to host
language mechanisms such as tabindex, aria-activedescendant provides another mechanism for
keyboard operation. Most other aspects of WAI-ARIA widget development depend on keyboard navigation
functioning properly.

When implementing aria-activedescendant as described below, the user agent keeps the DOM focus on
the container element or on an input element that controls the container element. However, the user agent
communicates desktop focus events and states to the assistive technology as if the element referenced by
aria-activedescendant has focus. User agents are not expected to validate that the active descendant is a
descendant of the container element. It is the responsibility of the user agent to ensure that keyboard events
are processed at the element that has DOM focus. Any keyboard events directed at the active descendant
bubble up to the DOM element with focus for processing.

If the author removes the element with focus, the author SHOULD move focus to a logical element.
Similarly, authors SHOULD not scroll the element with focus off screen unless the user performed a
scrolling action.

Authors SHOULD ensure that all interactive elements are focusable and that all parts of composite widgets
are either focusable or have a documented alternative method to achieve their function.

Authors MUST manage focus on the following container roles:

• grid

• listbox

• menu

• menubar

• radiogroup

4.3.1 Information for Authors

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

25 of 298 27/08/2025, 04:00

• tree

• treegrid

• tablist

User agents that support WAI-ARIA expand the usage of host language mechanisms such as tabindex,
focus, and blur to allow them on all elements. Where the host language supports it, authors MAY add any
element such as a div, span, or img to the default tab order by setting tabindex="0". In addition, any item
with tabindex equal to a negative integer is focusable via script or a mouse click, but is not part of the
default tab order. This is supported in both [HTML] and [SVG2].

Authors MAY use aria-activedescendant to inform assistive technologies which descendant of a
widget element is treated as having keyboard focus in the user interface if the role of the widget element
supports aria-activedescendant. This is often a more convenient way of providing keyboard navigation
within widgets, such as a listbox, where the widget occupies only one stop in the page Tab sequence and
other keys, typically arrow keys, are used to focus elements inside the widget.

Typically, the author will use host language semantics to put the widget in the Tab sequence (e.g.,
tabindex="0" in HTML) and aria-activedescendant to point to the ID of the currently active
descendant. The author, not the user agent, is responsible for styling the currently active descendant to show
it has keyboard focus. The author cannot use :focus to style the currently active descendant since the actual
focus is on the container.

More information on managing focus can be found in the Developing a Keyboard Interface section of the
WAI-ARIA Authoring Practices.

The user agent MUST do the following to implement aria-activedescendant:

1. Implement the host language method for keyboard navigation so that widgets that support aria-
activedescendant may be included in the tab order.

2. For platforms that expose desktop focus or accessibility API focus separately from DOM focus, do not
expose the focused state in the accessibility API for any element when it has DOM focus and also has
aria-activedescendant which points to a valid ID reference.

3. When the aria-activedescendant attribute changes on an element that currently has DOM focus,
remove the focused state from the previously focused object and fire an accessibility API desktop focus
event on the new element referenced by aria-activedescendant. If aria-activedescendant is
cleared or does not point to an element in the current document, fire a desktop focus event for the object
that had the attribute change.

4.3.2 Information for User Agents

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

26 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/practices/keyboard-interface/
https://www.w3.org/WAI/ARIA/apg/practices/keyboard-interface/

4. Apply the following accessibility API states to any element with an ID attribute that can be referenced
by an element with both an aria-activedescendant attribute and has DOM focus. There are two
ways an element can be referenced by aria-activedescendant. One way is when it is owned by an
element with aria-activedescendant and the other is when it is owned by an element that is
controlled by an element with role of combobox, textbox or searchbox with an aria-
activedescendant attribute:

A. Focusable, if the element also has a WAI-ARIA role. The element needs to be focusable because it
could be referenced by the aria-activedescendant attribute. Native elements that have no role
attribute do not need to be checked; their native semantics determine the focusable state.

B. Focused, whenever the element is the target of the aria-activedescendant attribute and the
element with the aria-activedescendant attribute has DOM focus.

When an assistive technology uses its platform's accessibility API to request a change of focus, user agents
MUST do the following:

1. Remove the platform's focused state from the previously focused object.

2. Set the DOM focus:

A. If the element can take DOM focus, the user agent MUST set the DOM focus to it.

B. Otherwise, if the current element has an ID and the ID is referenced by the aria-
activedescendant attribute of an element that is focusable, the user agent MUST set DOM
focus to the element that has the aria-activedescendant attribute.

NOTE

An element with an ID can be referenced when it is owned by a container element that has the
aria-activedescendant attribute or by a container element that is controlled by an element
that has the aria-activedescendant attribute (e.g. see combobox). Otherwise the aria-
activedescendant attribute reference indicates an author error.

NOTE

The inability to set DOM focus to the containing element indicates an author error.

C. Otherwise, the user agent MAY attempt to set DOM focus to the child element itself.

3. If the current element has an ID and is owned by either a container element with both an aria-
activedescendant attribute and has DOM focus, or by a container element that is controlled by an
element with both an aria-activedescendant attribute and has DOM focus, the user agent MUST
set the accessibility API focused state and fire an accessibility API focus event on the element identified
by the value of aria-activedescendant.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

27 of 298 27/08/2025, 04:00

This section defines WAI-ARIA roles and describes their characteristics and properties.

The roles, their characteristics, the states and properties they support, and specification of how they may be
used in markup, shall be considered normative.

In order to reflect the content in the DOM, user agents SHOULD map the role attribute to the appropriate
value in the implemented accessibility API, and user agents SHOULD update the mapping when the role
attribute changes.

The Roles Model uses the following relationships to relate WAI-ARIA roles to each other and to concepts
from other specifications, such as HTML.

The role that the current subclassed role extends in the Roles Model. This extension causes all the properties
and constraints of the superclass role to propagate to the subclass role. Other than well known stable
specifications, inheritance may be restricted to items defined inside this specification, so that external items
cannot be changed and affect inherited classes.

Informative list of roles for which this role is the superclass. This is provided to facilitate reading of the
specification but adds no new information.

Informative data about a similar or related idea from other specifications. Concepts that are related are not
necessarily identical. Related concepts do not inherit properties from each other. Hence if the definition of

5. The Roles Model

5.1 Relationships Between Concepts

5.1.1 Superclass Role

5.1.2 Subclass Roles

5.1.3 Related Concepts

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

28 of 298 27/08/2025, 04:00

one concept changes, the properties, behavior, and definition of its related concept is not affected.

For example, a progress bar is like a status indicator. Therefore, the progressbar widget has a related
concept which includes status. However, if the definition of status is modified, the definition of a
progressbar is not affected.

Informative data about objects that are considered prototypes for the role. Base concept is similar to type, but
without inheritance of limitations and properties. Base concepts are designed as a substitute for inheritance
for external concepts. A base concept is like a related concept except that the base concept is almost identical
to the role definition.

For example, the checkbox defined in this document has similar functionality and anticipated behavior to a
<input[type="checkbox"]> defined in [HTML]. Therefore, a checkbox has an [HTML] checkbox as a
baseConcept. However, if the original [HTML] checkbox baseConcept definition is modified, the definition
of a checkbox in this document will not be affected, because there is no actual inheritance of the respective
type.

Roles are defined and described by their characteristics. Characteristics define the structural function of a
role, such as what a role is, concepts behind it, and what instances the role can or must contain. In the case of
widgets this also includes how it interacts with the user agent based on mapping to HTML forms. States and
properties from WAI-ARIA that are supported by the role are also indicated.

Roles define the following characteristics.

Values
Boolean

Abstract roles are the foundation upon which all other WAI-ARIA roles are built. Content authors MUST
NOT use abstract roles because they are not implemented in the API binding. User agents MUST NOT map
abstract roles to the standard role mechanism of the accessibility API. Abstract roles are provided to help
with the following:

5.1.4 Base Concept

5.2 Characteristics of Roles

5.2.1 Abstract Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

29 of 298 27/08/2025, 04:00

1. Organize the Roles Model and provide roles with a meaning in the context of known concepts.

2. Streamline the addition of roles that include necessary features.

States and properties specifically required for the role and subclass roles. Content authors MUST provide a
non-empty value for required states and properties. Content authors MUST NOT use the value undefined
for required states and properties, unless undefined is an explicitly-supported value of that state or property.

When an object inherits from multiple ancestors and one ancestor indicates that property is supported while
another ancestor indicates that it is required, the property is required in the inheriting object.

NOTE

A host language attribute with the appropriate implicit WAI-ARIA semantic fulfills this requirement.

States and properties specifically applicable to the role and child roles. Content authors MAY provide values
for supported states and properties, but need not in cases where default values are sufficient. User agents
MUST map all supported states and properties for the role to an accessibility API. If the state or property is
undefined and it has a default value for the role, user agents SHOULD expose the default value.

NOTE

A host language attribute with the appropriate implicit WAI-ARIA semantic fulfills this requirement.

Informative list of properties that are inherited by a role from superclass roles. States and properties are
inherited from superclass roles in the Roles Model, not from ancestor elements in the DOM tree. These
properties are not explicitly defined on the role, as the inheritance of properties is automatic. This information
is provided to facilitate reading of the specification. The set of supported states and properties combined with
inherited states and properties forms the full set of states and properties supported by the role.

5.2.2 Required States and Properties

5.2.3 Supported States and Properties

5.2.4 Inherited States and Properties

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

30 of 298 27/08/2025, 04:00

List of states and properties that are prohibited on a role. Authors MUST NOT specify a prohibited state or
property.

NOTE

A host language attribute with the appropriate implicit WAI-ARIA semantic would also prohibit a state or
property in this section.

Any element that will be owned by the element with this role. For example, an element with the role list
will own at least one element with the role listitem.

When multiple roles are specified as required owned elements for a role, at least one instance of one required
owned element is expected. This specification does not require an instance of each of the listed owned roles.
For example, a menu should have at least one instance of a menuitem, menuitemcheckbox, or
menuitemradio. The menu role does not require one instance of each.

There may be times that required owned elements are missing, for example, while editing or while loading a
data set. When a widget is missing required owned elements due to script execution or loading, authors
MUST mark a containing element with aria-busy equal to true. For example, until a page is fully
initialized and complete, an author could mark the document element as busy.

NOTE

A role that has 'required owned elements' does not imply the reverse relationship. While processing of a
role may be incomplete without elements of given roles present as descendants, elements with roles in
this list do not always have to be found within elements of the given role. See required context role for
requirements about the context where elements of a given role will be contained.

NOTE

An element with a subclass role of the 'required owned element' does not fulfill this requirement. For
example, the listbox role requires ownership of an element using the option or group role. Although
the group role is the superclass of row, adding an owned element with a role of row will not fulfill the
requirement that listbox owns an option or a group.

5.2.5 Prohibited States and Properties

5.2.6 Required Owned Elements

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

31 of 298 27/08/2025, 04:00

NOTE

An element with the appropriate implicit WAI-ARIA semantic fulfills this requirement.

The required context role defines the owning container where this role is allowed. If a role has a required
context, authors MUST ensure that an element with the role is contained inside (or owned by) an element
with the required context role. For example, an element with role listitem is only meaningful when
contained inside (or owned by) an element with role list.

NOTE

A role that has 'required context role' does not imply the reverse relationship. While an element with the
given role needs to appear within an element of the listed role(s) in order to be meaningful, elements of
the listed roles do not always need descendant elements of the given role in order to be meaningful. See
required owned elements for requirements about elements that require presence of a given descendant to
be processed properly.

NOTE

An element with the appropriate implicit WAI-ARIA semantic fulfills this requirement.

Values
One of the following values:

1. author: name comes from values provided by the author in explicit markup features such as the
aria-label attribute, the aria-labelledby attribute, or the host language labeling mechanism,
such as the alt or title attributes in HTML, with HTML title attribute having the lowest
precedence for specifying a text alternative.

2. contents: name comes from the text value of the element node. Although this may be allowed in
addition to "author" in some roles, this is used in content only if higher priority "author" features
are not provided. Priority is defined by the accessible name and description computation algorithm
[ACCNAME-1.2].

3. prohibited: the element does not support name from author. Authors MUST NOT use the aria-

5.2.7 Required Context Role

5.2.8 Accessible Name Calculation

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

32 of 298 27/08/2025, 04:00

https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_te
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_te

label or aria-labelledby attributes to name the element.

Name Computation is defined in the Accessible Name and Description specification.

Description Computation is defined in the Accessible Name and Description specification.

Accessible Name and Description Computation is defined in the Accessible Name and Description
specification.

• alert

• alertdialog (name required)

• application (name required)

• article

• banner

• blockquote

• button (name required)

• cell

• checkbox (name required)

• columnheader (name required)

• combobox (name required)

5.2.8.1 Name Computation

5.2.8.2 Description Computation

5.2.8.3 Accessible Name and Description Computation

5.2.8.4 Roles Supporting Name from Author

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

33 of 298 27/08/2025, 04:00

https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_name
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_name
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_description
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_description
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_te
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_te

• command

• complementary

• composite

• contentinfo

• definition

• dialog (name required)

• directory

• document

• feed

• figure

• form

• grid (name required)

• gridcell

• group

• heading (name required)

• img (name required)

• input

• landmark

• link (name required)

• list

• listbox (name required)

• listitem

• log

• main

• marquee (name required)

• math

• meter (name required)

• menu

• menubar

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

34 of 298 27/08/2025, 04:00

• menuitem (name required)

• menuitemcheckbox (name required)

• menuitemradio (name required)

• navigation

• note

• option (name required)

• progressbar (name required)

• radio (name required)

• radiogroup (name required)

• range

• region (name required)

• row

• rowgroup

• rowheader (name required)

• scrollbar

• search

• searchbox (name required)

• sectionhead

• select

• separator

• slider (name required)

• spinbutton (name required)

• status

• switch (name required)

• tab

• table (name required)

• tablist

• tabpanel (name required)

• term

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

35 of 298 27/08/2025, 04:00

• textbox (name required)

• time

• timer

• toolbar

• tooltip (name required)

• tree (name required)

• treegrid (name required)

• treeitem (name required)

• window

• button (name required)

• cell

• checkbox (name required)

• columnheader (name required)

• gridcell

• heading (name required)

• link (name required)

• menuitem (name required)

• menuitemcheckbox (name required)

• menuitemradio (name required)

• option (name required)

• radio (name required)

• row

• rowheader (name required)

• sectionhead

• switch (name required)

5.2.8.5 Roles Supporting Name from Content

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

36 of 298 27/08/2025, 04:00

• tab

• tooltip (name required)

• treeitem (name required)

• caption

• code

• deletion

• emphasis

• generic

• insertion

• paragraph

• presentation

• strong

• subscript

• superscript

Values
Boolean (true | false)

The DOM descendants are presentational. User agents SHOULD NOT expose descendants of this element
through the platform accessibility API. If user agents do not hide the descendant nodes, some information
may be read twice.

Many states and properties have default values. Occasionally, the default value when used on a given role

5.2.8.6 Roles which cannot be named (Name prohibited)

5.2.9 Presentational Children

5.2.10 Implicit Value for Role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

37 of 298 27/08/2025, 04:00

should be different from the usual default. Roles that require a state or property to have a non-standard
default value indicate this in the "Implicit Value for Role". This is expressed in the form "Default for state
or property name is new default value". Roles that define this have the new default value for the
state or property if the author does not provide an explicit value.

To support the current user scenario, this specification categorizes roles that define user interface widgets
(sliders, tree controls, etc.) and those that define page structure (sections, navigation, etc.). Note that some
assistive technologies provide special modes of interaction for regions marked with role application or
document.

A visual description of the relationships among roles is available in the ARIA 1.2 Class Diagram.

Roles are categorized as follows:

1. Abstract Roles

2. Widget Roles

3. Document Structure Roles

4. Landmark Roles

5. Live Region Roles

6. Window Roles

The following roles are used to support the WAI-ARIA Roles Model for the purpose of defining general role
concepts.

Abstract roles are used for the ontology. Authors MUST NOT use abstract roles in content.

• command

• composite

• input

• landmark

• range

5.3 Categorization of Roles

5.3.1 Abstract Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

38 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/1.2/class-diagram/
https://www.w3.org/WAI/ARIA/1.2/class-diagram/

• roletype

• section

• sectionhead

• select

• structure

• widget

• window

The following roles act as standalone user interface widgets or as part of larger, composite widgets.

• button

• checkbox

• gridcell

• link

• menuitem

• menuitemcheckbox

• menuitemradio

• option

• progressbar

• radio

• scrollbar

• searchbox

• separator (when focusable)

• slider

• spinbutton

• switch

• tab

5.3.2 Widget Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

39 of 298 27/08/2025, 04:00

• tabpanel

• textbox

• treeitem

The following roles act as composite user interface widgets. These roles typically act as containers that
manage other, contained widgets.

• combobox

• grid

• listbox

• menu

• menubar

• radiogroup

• tablist

• tree

• treegrid

The following roles describe structures that organize content in a page. Document structures are not usually
interactive.

• application

• article

• blockquote

• caption

• cell

• columnheader

• definition

• deletion

• directory

• document

5.3.3 Document Structure Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

40 of 298 27/08/2025, 04:00

• emphasis

• feed

• figure

• generic

• group

• heading

• img

• insertion

• list

• listitem

• math

• meter

• none

• note

• paragraph

• presentation

• row

• rowgroup

• rowheader

• separator (when not focusable)

• strong

• subscript

• superscript

• table

• term

• time

• toolbar

• tooltip

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

41 of 298 27/08/2025, 04:00

The following roles are regions of the page intended as navigational landmarks. All of these roles inherit
from the landmark base type and all are imported from the Role Attribute [ROLE-ATTRIBUTE]. The roles
are included here in order to make them clearly part of the WAI-ARIA Roles Model.

• banner

• complementary

• contentinfo

• form

• main

• navigation

• region

• search

The following roles are live regions and may be modified by live region attributes.

• alert

• log

• marquee

• status

• timer

The following roles act as windows within the browser or application.

• alertdialog

• dialog

5.3.4 Landmark Roles

5.3.5 Live Region Roles

5.3.6 Window Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

42 of 298 27/08/2025, 04:00

https://www.w3.org/TR/role-attribute/#s_role_module_attributes
https://www.w3.org/TR/role-attribute/#s_role_module_attributes

Below is an alphabetical list of WAI-ARIA roles to be used by authors.

Abstract roles are used for the ontology. Authors MUST NOT use abstract roles in content.

alert
A type of live region with important, and usually time-sensitive, information. See related alertdialog
and status.

alertdialog
A type of dialog that contains an alert message, where initial focus goes to an element within the dialog.
See related alert and dialog.

application
A structure containing one or more focusable elements requiring user input, such as keyboard or
gesture events, that do not follow a standard interaction pattern supported by a widget role.

article
A section of a page that consists of a composition that forms an independent part of a document, page,
or site.

banner
A landmark that contains mostly site-oriented content, rather than page-specific content.

blockquote
A section of content that is quoted from another source.

button
An input that allows for user-triggered actions when clicked or pressed. See related link.

caption
Visible content that names, and may also describe, a figure, table, grid, or treegrid.

cell
A cell in a tabular container. See related gridcell.

checkbox
A checkable input that has three possible values: true, false, or mixed.

code
A section whose content represents a fragment of computer code.

columnheader
A cell containing header information for a column.

combobox
An input that controls another element, such as a listbox or grid, that can dynamically pop up to
help the user set the value of the input.

command

5.4 Definition of Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

43 of 298 27/08/2025, 04:00

A form of widget that performs an action but does not receive input data.

complementary
A landmark that is designed to be complementary to the main content at a similar level in the DOM
hierarchy, but remaining meaningful when separated from the main content.

composite
A widget that may contain navigable descendants or owned children.

contentinfo
A landmark that contains information about the parent document.

definition
A definition of a term or concept. See related term.

deletion
A deletion contains content that is marked as removed or content that is being suggested for removal.
See related insertion.

dialog
A dialog is a descendant window of the primary window of a web application. For HTML pages, the
primary application window is the entire web document, i.e., the body element.

directory
[Deprecated in ARIA 1.2] A list of references to members of a group, such as a static table of contents.

document
An element containing content that assistive technology users may want to browse in a reading mode.

emphasis
One or more emphasized characters. See related strong.

feed
A scrollable list of articles where scrolling may cause articles to be added to or removed from
either end of the list.

figure
A perceivable section of content that typically contains a graphical document, images, code snippets,
or example text. The parts of a figure MAY be user-navigable.

form
A landmark region that contains a collection of items and objects that, as a whole, combine to create a
form. See related search.

generic
A nameless container element that has no semantic meaning on its own.

grid
A composite widget containing a collection of one or more rows with one or more cells where some or
all cells in the grid are focusable by using methods of two-dimensional navigation, such as directional
arrow keys.

gridcell
A cell in a grid or treegrid.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

44 of 298 27/08/2025, 04:00

group
A set of user interface objects that is not intended to be included in a page summary or table of contents
by assistive technologies.

heading
A heading for a section of the page.

img
A container for a collection of elements that form an image.

input
A generic type of widget that allows user input.

insertion
An insertion contains content that is marked as added or content that is being suggested for addition. See
related deletion.

landmark
A perceivable section containing content that is relevant to a specific, author-specified purpose and
sufficiently important that users will likely want to be able to navigate to the section easily and to have it
listed in a summary of the page. Such a page summary could be generated dynamically by a user agent
or assistive technology.

link
An interactive reference to an internal or external resource that, when activated, causes the user agent to
navigate to that resource. See related button.

list
A section containing listitem elements. See related listbox.

listbox
A widget that allows the user to select one or more items from a list of choices. See related combobox
and list.

listitem
A single item in a list or directory.

log
A type of live region where new information is added in meaningful order and old information may
disappear. See related marquee.

main
A landmark containing the main content of a document.

marquee
A type of live region where non-essential information changes frequently. See related log.

math
Content that represents a mathematical expression.

meter
An element that represents a scalar measurement within a known range, or a fractional value. See related
progressbar.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

45 of 298 27/08/2025, 04:00

menu
A type of widget that offers a list of choices to the user.

menubar
A presentation of menu that usually remains visible and is usually presented horizontally.

menuitem
An option in a set of choices contained by a menu or menubar.

menuitemcheckbox
A menuitem with a checkable state whose possible values are true, false, or mixed.

menuitemradio
A checkable menuitem in a set of elements with the same role, only one of which can be checked at a
time.

navigation
A landmark containing a collection of navigational elements (usually links) for navigating the
document or related documents.

none
An element whose implicit native role semantics will not be mapped to the accessibility API. See
synonym presentation.

note
A section whose content is parenthetic or ancillary to the main content of the resource.

option
A selectable item in a listbox.

paragraph
A paragraph of content.

presentation
An element whose implicit native role semantics will not be mapped to the accessibility API. See
synonym none.

progressbar
An element that displays the progress status for tasks that take a long time.

radio
A checkable input in a group of elements with the same role, only one of which can be checked at a
time.

radiogroup
A group of radio buttons.

range
An element representing a range of values.

region
A landmark containing content that is relevant to a specific, author-specified purpose and sufficiently
important that users will likely want to be able to navigate to the section easily and to have it listed in a
summary of the page. Such a page summary could be generated dynamically by a user agent or assistive

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

46 of 298 27/08/2025, 04:00

technology.

roletype
The base role from which all other roles inherit.

row
A row of cells in a tabular container.

rowgroup
A structure containing one or more row elements in a tabular container.

rowheader
A cell containing header information for a row.

scrollbar
A graphical object that controls the scrolling of content within a viewing area, regardless of whether the
content is fully displayed within the viewing area.

search
A landmark region that contains a collection of items and objects that, as a whole, combine to create a
search facility. See related form and searchbox.

searchbox
A type of textbox intended for specifying search criteria. See related textbox and search.

section
A renderable structural containment unit in a document or application.

sectionhead
A structure that labels or summarizes the topic of its related section.

select
A form widget that allows the user to make selections from a set of choices.

separator
A divider that separates and distinguishes sections of content or groups of menuitems.

slider
An input where the user selects a value from within a given range.

spinbutton
A form of range that expects the user to select from among discrete choices.

status
A type of live region whose content is advisory information for the user but is not important enough to
justify an alert, often but not necessarily presented as a status bar.

strong
Content that is important, serious, or urgent. See related emphasis.

structure
A document structural element.

subscript
One or more subscripted characters. See related superscript.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

47 of 298 27/08/2025, 04:00

superscript
One or more superscripted characters. See related superscript.

switch
A type of checkbox that represents on/off values, as opposed to checked/unchecked values. See related
checkbox.

tab
A grouping label providing a mechanism for selecting the tab content that is to be rendered to the user.

table
A section containing data arranged in rows and columns. See related grid.

tablist
A list of tab elements, which are references to tabpanel elements.

tabpanel
A container for the resources associated with a tab, where each tab is contained in a tablist.

term
A word or phrase with a corresponding definition. See related definition.

textbox
A type of input that allows free-form text as its value.

time
An element that represents a specific point in time.

timer
A type of live region containing a numerical counter which indicates an amount of elapsed time from a
start point, or the time remaining until an end point.

toolbar
A collection of commonly used function buttons or controls represented in compact visual form.

tooltip
A contextual popup that displays a description for an element.

tree
A widget that allows the user to select one or more items from a hierarchically organized collection.

treegrid
A grid whose rows can be expanded and collapsed in the same manner as for a tree.

treeitem
An option item of a tree. This is an element within a tree that may be expanded or collapsed if it
contains a sub-level group of tree item elements.

widget
An interactive component of a graphical user interface (GUI).

window
A browser or application window.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

48 of 298 27/08/2025, 04:00

A type of live region with important, and usually time-sensitive, information. See related alertdialog and
status.

Alerts are used to convey messages that may be immediately important to users. In the case of audio
warnings, alerts provide an accessible alternative for hearing-impaired users. The alert role is applied to the
element containing the alert message. An alert is a specialized form of the status role, which is processed
as an atomic live region.

Alerts are assertive live regions, which means they cause immediate notification for assistive technology
users. If the operating system allows, the user agent SHOULD fire a system alert event through the
accessibility API when the WAI-ARIA alert is created.

Neither authors nor user agents are required to set or manage focus to an alert in order for it to be processed.
Since alerts are not required to receive focus, authors SHOULD NOT require users to close an alert. If an
author desires focus to move to a message when it is conveyed, the author SHOULD use alertdialog
instead of alert.

Elements with the role alert have an implicit aria-live value of assertive, and an implicit aria-
atomic value of true.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: alertdialog

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aalleerrtt role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

49 of 298 27/08/2025, 04:00

Characteristic Value
aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-live is assertive.
Default for aria-atomic is true.

A type of dialog that contains an alert message, where initial focus goes to an element within the dialog. See
related alert and dialog.

Alert dialogs are used to convey messages to alert the user. The alertdialog role goes on the node
containing both the alert message and the rest of the dialog. Content authors SHOULD make alert dialogs
modal by ensuring that, while the alertdialog is shown, keyboard and mouse interactions only operate
within the dialog. See aria-modal.

Unlike alert, alertdialog can receive a response from the user. For example, to confirm that the user
understands the alert being generated. When the alert dialog is displayed, authors SHOULD set focus to an
active element within the alert dialog, such as a form control or confirmation button. The user agent
SHOULD fire a system alert event through the accessibility API when the alert is created, provided one is
specified by the intended accessibility API.

Authors SHOULD use aria-describedby on an alertdialog to reference the alert message element in
the dialog. If they do not, an assistive technology can resort to its internal recovery mechanism to determine
the contents of the alert message.

aalleerrttddiiaalloogg role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

50 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Superclass Role: alert

dialog

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-modal

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

51 of 298 27/08/2025, 04:00

Characteristic Value

Accessible Name Required: True

A structure containing one or more focusable elements requiring user input, such as keyboard or gesture
events, that do not follow a standard interaction pattern supported by a widget role.

Some user agents and assistive technologies have a browse mode where standard input events, such as up and
down arrow key events, are intercepted and used to control a reading cursor. This browse mode behavior
prevents elements that do not have a widget role from receiving and using such keyboard and gesture events
to provide interactive functionality.

When there is a need to create an element with an interaction model that is not supported by any of the WAI-
ARIA widget roles, authors MAY give that element role application. And, when a user navigates into an
element with role application, assistive technologies that intercept standard input events SHOULD switch
to a mode that passes most or all standard input events through to the web application.

For example, a presentation slide editor uses arrow keys to change the positions of textbox and image
elements on the slide. There are not any WAI-ARIA widget roles that correspond to such an interaction
model so an author could give the slide container role application, an aria-roledescription of "Slide
Editor", and use aria-describedby to provide instructions.

Because only the focusable elements contained in an application element are accessible to users of some
assistive technologies, authors MUST use one of the following techniques to ensure all non-decorative static
text or image content inside an application is accessible:

1. Associate the content with a focusable element using aria-labelledby or aria-describedby.

2. Place the content in a focusable element that has role document or article.

3. Manage focus of owned elements as described in Managing Focus, updating the value of aria-
activedescendant to reference the element containing the focused content.

Characteristics:

Characteristic Value

Superclass Role: structure

Supported States and Properties: aria-activedescendant

aria-disabled

aria-errormessage

aria-expanded

aapppplliiccaattiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

52 of 298 27/08/2025, 04:00

Characteristic Value
aria-haspopup

aria-invalid

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

A section of a page that consists of a composition that forms an independent part of a document, page, or site.

An article is not a navigational landmark, but may be nested to form a discussion where assistive
technologies could pay attention to article nesting to assist the user in following the discussion. An article
could be a forum post, a magazine or newspaper article, a web log entry, a user-submitted comment, or any
other independent item of content. It is independent in that its contents could stand alone, for example in
syndication. However, the element is still associated with its ancestors; for instance, contact information that
applies to a parent body element still covers the article as well. When nesting articles, the child articles

aarrttiiccllee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

53 of 298 27/08/2025, 04:00

represent content that is related to the content of the parent article. For instance, a web log entry on a site that
accepts user-submitted comments could represent the comments as articles nested within the article for the
web log entry. Author, heading, date, or other information associated with an article does not apply to nested
articles.

When the user navigates to an element assigned the role of article, assistive technologies that typically
intercept standard keyboard events SHOULD switch to document browsing mode, as opposed to passing
keyboard events through to the web application. Assistive technologies MAY provide a feature allowing the
user to navigate the hierarchy of any nested article elements.

When an article is in the context of a feed, the author MAY specify values for aria-posinset and
aria-setsize.

Characteristics:

Characteristic Value

Superclass Role: document

Related Concepts: <article> in [HTML]

Supported States and Properties: aria-posinset

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

54 of 298 27/08/2025, 04:00

Characteristic Value
aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A landmark that contains mostly site-oriented content, rather than page-specific content.

Site-oriented content typically includes things such as the logo or identity of the site sponsor, and a site-
specific search tool. A banner usually appears at the top of the page and typically spans the full width.

User agents SHOULD treat elements with the role of banner as navigational landmarks.

Within any document or application, the author SHOULD mark no more than one element with the
banner role.

NOTE

Because document and application elements can be nested in the DOM, they may have multiple
banner elements as DOM descendants, assuming each of those is associated with different document
nodes, either by a DOM nesting (e.g., document within document) or by use of the aria-owns
attribute.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

bbaannnneerr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

55 of 298 27/08/2025, 04:00

Characteristic Value
aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A section of content that is quoted from another source.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <blockquote> in [HTML]

bblloocckkqquuoottee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

56 of 298 27/08/2025, 04:00

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

An input that allows for user-triggered actions when clicked or pressed. See related link.

Buttons are mostly used for discrete actions. Standardizing the appearance of buttons enhances the user's

bbuuttttoonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

57 of 298 27/08/2025, 04:00

recognition of the widgets as buttons and allows for a more compact display in toolbars.

Buttons support the optional attribute aria-pressed. Buttons with a non-empty aria-pressed attribute
are toggle buttons. When aria-pressed is true the button is in a "pressed" state, when aria-pressed is
false it is not pressed. If the attribute is not present, the button is a simple command button.

Characteristics:

Characteristic Value

Superclass Role: command

Base Concept: <button> in [HTML]

Related Concepts: link

Supported States and Properties: aria-disabled

aria-haspopup

aria-expanded

aria-pressed

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

58 of 298 27/08/2025, 04:00

Characteristic Value
aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

Visible content that names, and may also describe, a figure, table, grid, or treegrid.

When using caption authors SHOULD ensure:

• The caption is a direct child of a figure, table, grid, or treegrid.

• The caption is the first child of a table, grid, or treegrid.

• The caption is the first or last child of a figure.

Authors SHOULD set aria-labelledby on the parent figure, table, grid, or treegrid to reference
the element with role caption. However, if a caption contains content that serves as both a name and
description for its parent, authors MAY instead set aria-labelledby to reference an element within the
caption that contains a concise name, and set aria-describedby to reference an element within the
caption that contains the descriptive content.

Characteristics:

Characteristic Value

ccaappttiioonn role

EXAMPLE 5

<ddiivv role="table" aria-labelledby="name" aria-describedby="desc">
<ddiivv role="caption">

<ddiivv id="name">Contest Entrants</ddiivv>
<ddiivv id="desc">

 This table shows the total number of entrants (500) the
 contest accepted over the past four weeks.

</ddiivv>
</ddiivv>
<!-- ... -->

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

59 of 298 27/08/2025, 04:00

Characteristic Value

Superclass Role: section

Related Concepts: <caption> in [HTML]
<figcaption> in [HTML]

Required Context Role: figure

grid

table

treegrid

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

60 of 298 27/08/2025, 04:00

Characteristic Value

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

A cell in a tabular container. See related gridcell.

Authors MUST ensure elements with role cell are contained in, or owned by, an element with the role row.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: columnheader

gridcell

rowheader

Base Concept: <td> in [HTML]

Required Context Role: row

Supported States and Properties: aria-colindex

aria-colspan

aria-rowindex

aria-rowspan

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

cceellll role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

61 of 298 27/08/2025, 04:00

Characteristic Value
aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

A checkable input that has three possible values: true, false, or mixed.

The aria-checked attribute of a checkbox indicates whether the input is checked (true), unchecked
(false), or represents a group of elements that have a mixture of checked and unchecked values (mixed).
Many checkboxes do not use the mixed value, and thus are effectively boolean checkboxes.

Characteristics:

Characteristic Value

Superclass Role: input

Subclass Roles: switch

Related Concepts: <input[type="checkbox"]> in [HTML]

cchheecckkbbooxx role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

62 of 298 27/08/2025, 04:00

Characteristic Value
option

Required States and Properties: aria-checked

Supported States and Properties: aria-errormessage

aria-expanded

aria-invalid

aria-readonly

aria-required

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

63 of 298 27/08/2025, 04:00

Characteristic Value

Accessible Name Required: True

Children Presentational: True

A section whose content represents a fragment of computer code.

The primary purpose of the code role is to inform assistive technologies that the content is computer code and
thus may require special presentation, in particular with respect to synthesized speech. More specifically,
screen readers and other tools which provide text-to-speech presentation of content SHOULD prefer full
punctuation verbosity to ensure common symbols (e.g. "-") are spoken.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <code> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

ccooddee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

64 of 298 27/08/2025, 04:00

Characteristic Value
aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

A cell containing header information for a column.

columnheader can be used as a column header in a table or grid. It could also be used in a pie chart to show
a similar relationship in the data.

The columnheader establishes a relationship between it and all cells in the corresponding column. It is the
structural equivalent to an HTML th element with a column scope.

Authors MUST ensure elements with role columnheader are contained in, or owned by, an element with the
role row.

Applying the aria-selected state on a columnheader MUST not cause the user agent to automatically
propagate the aria-selected state to all the cells in the corresponding column. An author MAY choose to
propagate selection in this manner depending on the specific application.

While the columnheader role can be used in both interactive grids and non-interactive tables, the use of
aria-readonly and aria-required is only applicable to interactive elements. Therefore, authors
SHOULD NOT use aria-required or aria-readonly in a columnheader that descends from a table,
and user agents SHOULD NOT expose either property to assistive technologies unless the columnheader
descends from a grid.

NOTE

Because cells are organized into rows, there is not a single container element for the column. The column
is the set of gridcell elements in a particular position within their respective row containers.

ccoolluummnnhheeaaddeerr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

65 of 298 27/08/2025, 04:00

NOTE: Usage of aria-disabled

While aria-disabled is currently supported on columnheader, in a future version the working group
plans to prohibit its use on elements with role columnheader except when the element is in the context
of a grid or treegrid.

Characteristics:

Characteristic Value

Superclass Role: cell

gridcell

sectionhead

Base Concept: <th[scope="col"]> in [HTML]

Required Context Role: row

Supported States and Properties: aria-sort

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-colindex

aria-colspan

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

66 of 298 27/08/2025, 04:00

Characteristic Value
aria-label

aria-labelledby

aria-live

aria-owns

aria-readonly

aria-relevant

aria-required

aria-roledescription

aria-rowindex

aria-rowspan

aria-selected (state)

Name From: contents

author

Accessible Name Required: True

An input that controls another element, such as a listbox or grid, that can dynamically pop up to help
the user set the value of the input.

EDITOR'S NOTE: Major Changes to combobox role in ARIA 1.2

The Guidance for combobox has changed significantly in ARIA 1.2 due to problems with
implementation of the previous patterns. Authors and developers of User Agents, Assistive Technologies,
and Conformance Checkers are advised to review this section carefully to understand the changes.
Explanation of the changes is available in the ARIA repository wiki.

A combobox functionally combines a named input field with the ability to assist value selection via a
supplementary popup element. A combobox input MAY be either a single-line text field that supports editing
and typing or an element that only displays the current value of the combobox. If the combobox supports text
input and provides autocompletion behavior as described in aria-autocomplete, authors MUST set
aria-autocomplete on the combobox element to the value that corresponds to the provided behavior.

Typically, the initial state of a combobox is collapsed. In the collapsed state, only the combobox element and
a separate, optional popup control button are visible. A combobox is said to be expanded when both the

ccoommbboobbooxx role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

67 of 298 27/08/2025, 04:00

https://github.com/w3c/aria/wiki/Resolving-ARIA-1.1-Combobox-Issues
https://github.com/w3c/aria/wiki/Resolving-ARIA-1.1-Combobox-Issues

combobox element showing its current value and its associated popup element are visible. Authors MUST
set aria-expanded to true on an element with role combobox when it is expanded and false when it is
collapsed.

Authors MUST ensure the popup element associated with a combobox has a role of listbox, tree, grid,
or dialog. Authors MUST set aria-controls on a combobox element to a value that refers to the
combobox popup element.

Elements with the role combobox have an implicit aria-haspopup value of listbox. If the combobox
popup element has a role other than listbox, authors MUST specify a value for aria-haspopup that
corresponds to the role of its popup.

If the user interface includes an additional icon that allows the visibility of the popup to be controlled via
pointer and touch events, authors SHOULD ensure that element has role button, that it is focusable but not
included in the page Tab sequence, and that it is not a descendant of the element with role combobox. In
addition, to be keyboard accessible, authors SHOULD provide keyboard mechanisms for moving focus
between the combobox element and elements contained in the popup. For example, one common convention
is that Down Arrow moves focus from the input to the first focusable descendant of the popup element. If the
popup element supports aria-activedescendant, in lieu of moving focus, such keyboard mechanisms
can control the value of aria-activedescendant on the combobox element. When a descendant of the
popup element is active, authors MAY set aria-activedescendant on the combobox to a value that refers
to the active element within the popup while focus remains on the combobox element.

User agents MUST expose the value of elements with role combobox to assistive technologies. The value of
a combobox is represented by one of the following:

• If the combobox element is a host language element that provides a value, such as an HTML input
element, the value of the combobox is the value of that element.

• Otherwise, the value of the combobox is represented by its descendant elements and can be determined
using the same method used to compute the name of a button from its descendant content.

EXAMPLE 6

<llaabbeell for="tag_combo">Tag</llaabbeell>
<iinnppuutt type="text" id="tag_combo"

role="combobox" aria-autocomplete="list"
aria-haspopup="listbox" aria-expanded="true"
aria-controls="popup_listbox" aria-activedescendant="selected_option">

<uull role="listbox" id="popup_listbox">
<llii role="option">Zebra</llii>
<llii role="option" id="selected_option">Zoom</llii>

</uull>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

68 of 298 27/08/2025, 04:00

EDITOR'S NOTE: Validity changes combobox for ARIA 1.2

Please review the following carefully. As a result of these changes a combobox following the ARIA 1.1
combobox specification will no longer conform with the ARIA specification.

NOTE

The structural requirements for combobox defined by this version of the specification are different from
the requirements defined by ARIA 1.0 and ARIA 1.1:

• The ARIA 1.0 specification required the input element with the combobox role to be a single-line
text field and reference the popup element with aria-owns instead of aria-controls.

• The ARIA 1.1 specification, which was not broadly supported by assistive technologies, required the
combobox to be a non-focusable element with two required owned elements -- a focusable textbox
and a popup element controlled by the textbox.

• The changes introduced in ARIA 1.2 improve interoperability with assistive technologies and enable
authors to create presentations of combobox that more closely imitate a native HTML select
element.

The features and behaviors of combobox implementations vary widely. Consequently, there are many
important authoring considerations. See the WAI-ARIA Authoring Practices for additional details on
implementing combobox design patterns.

Characteristics:

Characteristic Value

Superclass Role: input

Related Concepts: <select> in [HTML]

Required States and Properties: aria-controls

aria-expanded

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

69 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

Characteristic Value

Supported States and Properties: aria-activedescendant

aria-autocomplete

aria-errormessage

aria-haspopup

aria-invalid

aria-readonly

aria-required

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-haspopup is listbox.

ccoommmmaanndd role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

70 of 298 27/08/2025, 04:00

A form of widget that performs an action but does not receive input data.

NOTE

command is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: button

link

menuitem

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

71 of 298 27/08/2025, 04:00

Characteristic Value
aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A landmark that is designed to be complementary to the main content at a similar level in the DOM
hierarchy, but remaining meaningful when separated from the main content.

There are various types of content that would appropriately have this role. For example, in the case of a
portal, this may include but not be limited to show times, current weather, related articles, or stocks to watch.
The complementary role indicates that contained content is relevant to the main content. If the
complementary content is completely separable from the main content, it may be appropriate to use a more
general role.

User agents SHOULD treat elements with the role of complementary as navigational landmarks.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

ccoommpplleemmeennttaarryy role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

72 of 298 27/08/2025, 04:00

Characteristic Value
aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A widget that may contain navigable descendants or owned children.

Authors SHOULD ensure that a composite widget exists as a single navigation stop within the larger
navigation system of the web page. Once the composite widget has focus, authors SHOULD provide a
separate navigation mechanism for users to navigate to elements that are descendants or owned children of
the composite element.

NOTE

composite is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: widget

ccoommppoossiittee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

73 of 298 27/08/2025, 04:00

Characteristic Value

Subclass Roles: grid

select

spinbutton

tablist

Supported States and Properties: aria-activedescendant

aria-disabled

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

74 of 298 27/08/2025, 04:00

A landmark that contains information about the parent document.

Examples of information included in this region of the page are copyrights and links to privacy statements.

User agents SHOULD treat elements with the role of contentinfo as navigational landmarks.

Within any document or application, the author SHOULD mark no more than one element with the
contentinfo role.

NOTE

Because document and application elements can be nested in the DOM, they may have multiple
contentinfo elements as DOM descendants, assuming each of those is associated with different
document nodes, either by a DOM nesting (e.g., document within document) or by use of the aria-
owns attribute.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

ccoonntteennttiinnffoo role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

75 of 298 27/08/2025, 04:00

Characteristic Value
aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A definition of a term or concept. See related term.

Authors SHOULD identify the element being defined by giving that element a role of term and referencing
it with the aria-labelledby attribute or by making the element with role term a descendant of the
element with role definition.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

ddeeffiinniittiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

76 of 298 27/08/2025, 04:00

Characteristic Value
aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A deletion contains content that is marked as removed or content that is being suggested for removal. See
related insertion.

Deletions are typically used to either mark differences between two versions of content or to designate
content suggested for removal in scenarios where multiple people are revising content.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

ddeelleettiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

77 of 298 27/08/2025, 04:00

Characteristic Value
aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

A dialog is a descendant window of the primary window of a web application. For HTML pages, the primary
application window is the entire web document, i.e., the body element.

Dialogs are most often used to prompt the user to enter or respond to information. A dialog that is designed
to interrupt workflow is usually modal. See related alertdialog.

Authors MUST provide an accessible name for a dialog, which can be done with the aria-label or aria-
labelledby attribute.

Authors SHOULD ensure that all dialogs (both modal and non-modal) have at least one focusable

ddiiaalloogg role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

78 of 298 27/08/2025, 04:00

descendant element. Authors SHOULD focus an element in the modal dialog when it is displayed, and
authors SHOULD manage focus of modal dialogs.

NOTE

In the description of this role, the term "web application" does not refer to the application role, which
specifies specific assistive technology behaviors.

Characteristics:

Characteristic Value

Superclass Role: window

Subclass Roles: alertdialog

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

79 of 298 27/08/2025, 04:00

Characteristic Value
aria-modal

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

[Deprecated in ARIA 1.2] A list of references to members of a group, such as a static table of contents.

NOTE

As exposed by accessibility APIs, the directory role is essentially equivalent to the list role. So,
using directory does not provide any additional benefits to assistive technology users. Authors are
advised to treat directory as deprecated and to use list, or a host language's equivalent semantics
instead.

A directory is a static table of contents, whether linked or unlinked. This includes tables of contents built
with lists, including nested lists. Dynamic tables of contents, however, might use a tree role instead.

Characteristics:

Characteristic Value

Superclass Role: list

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in

ddiirreeccttoorryy role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

80 of 298 27/08/2025, 04:00

Characteristic Value
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

An element containing content that assistive technology users may want to browse in a reading mode.

When user agent focus moves to an element assigned the role of document, assistive technologies having a
reading mode for browsing static content MAY switch to that reading mode and intercept standard input
events, such as Up or Down arrow keyboard events, to control the reading cursor.

Because assistive technologies that have a reading mode default to that mode for all elements except for
those with either a widget or application role, the only circumstance where the document role is useful
for changing assistive technology behavior is when the element with role document is a focusable child
element of a widget or application. For example, given an application element which contains some
static rich text, the author can apply role document to the element containing the text and give it a
tabindex of 0. When a screen reader user presses the Tab key and places focus on the document element,
the user will be able to read the text with the screen reader's reading cursor.

Characteristics:

Characteristic Value

ddooccuummeenntt role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

81 of 298 27/08/2025, 04:00

Characteristic Value

Superclass Role: structure

Subclass Roles: article

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: False

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

82 of 298 27/08/2025, 04:00

One or more emphasized characters. See related strong.

The purpose of the emphasis role is to stress or emphasize content. It is not for communicating changes in
typographical presentation that do not impact the meaning of the content. Authors SHOULD use the
emphasis role only if its absence would change the meaning of the content.

The emphasis role is not intended to convey importance; for that purpose, the strong role is more
appropriate.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

eemmpphhaassiiss role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

83 of 298 27/08/2025, 04:00

Characteristic Value
aria-relevant

aria-roledescription

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

A scrollable list of articles where scrolling may cause articles to be added to or removed from either
end of the list.

A feed enables users of assistive technologies that have a document browse mode, such as screen readers, to
use the browse mode reading cursor to both read and scroll through a stream of rich content that may
continue scrolling infinitely by loading more content as the user reads. In a feed, assistive technologies
provide a web application with signals of the user's reading cursor movement by moving user agent focus,
enabling the application to both add new content and visually position content as the user browses the page.
The feed also lets authors inform assistive technologies when additions and removals are occurring so
assistive technologies can more reliably update their reading view without disrupting reading or degrading
performance.

For example, a feed could be used to present a stream of news stories where each article contains a story
with text, links, images, and comments as well as widgets for sharing and commenting. As a screen reader
user reads and interacts with each story and moves the screen reader reading cursor from story to story, each
story scrolls into view and, as needed, new stories are loaded.

A feed is a container element whose children have role article. When articles are added or removed
from either or both ends of a feed, authors SHOULD set aria-busy to true on the feed element before
the changes are made and set it to false after the changes are complete. Authors SHOULD avoid inserting
or removing articles in the middle of a feed. These requirements help assistive technologies gracefully
respond to changes in the feed content that occur simultaneously with user commands to move the reading
cursor within the feed.

Authors SHOULD make each article in a feed focusable and ensure that the application scrolls an
article into view when user agent focus is set on the article or one of its descendant elements. For
example, in HTML, each article element should have a tabindex value of either -1 or 0.

When an assistive technology reading cursor moves from one article to another, assistive technologies
SHOULD set user agent focus on the article that contains the reading cursor. If the reading cursor lands
on a focusable element inside the article, the assistive technology MAY set focus on that element in lieu of

ffeeeedd role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

84 of 298 27/08/2025, 04:00

setting focus on the containing article.

Because the ability to scroll to another article with an assistive technology reading cursor depends on the
presence of another article in the page, authors SHOULD attempt to load additional articles before
user agent focus reaches an article at either end of the set of articles that has been loaded.
Alternatively, authors MAY include an article at either or both ends of the loaded set of articles that
includes an element, such as a button, that lets the user request more articles to be loaded.

In addition to providing a brief label, authors MAY apply aria-describedby to article elements in a
feed to suggest to screen readers which elements to speak after the label when users navigate by article.
Screen readers MAY provide users with a way to quickly scan feed content by speaking both the label and
accessible description when navigating by article, enabling the user to ignore repetitive or less important
elements, such as embedded interaction widgets, that the author has left out of the description.

Authors SHOULD provide keyboard commands for moving focus among articles in a feed so users who
do not utilize an assistive technology that provides article navigation features can use the keyboard to
navigate the feed.

If the number of articles available in a feed supply is static, authors MAY specify aria-setsize on
article elements in that feed. However, if the total number is extremely large, indefinite, or changes often,
authors MAY set aria-setsize to -1 to communicate the unknown size of the set.

See the WAI-ARIA Authoring Practices for additional details on implementing a feed design pattern.

Characteristics:

Characteristic Value

Superclass Role: list

Required Owned Elements: article

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

85 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

Characteristic Value
aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: False

A perceivable section of content that typically contains a graphical document, images, code snippets, or
example text. The parts of a figure MAY be user-navigable.

Authors SHOULD provide a reference to the figure from the main text, but the figure need not be
displayed at the same location as the referencing element. Authors MAY reference text serving as a caption
using aria-describedby. Authors MAY provide a label using aria-label or MAY reference text serving
as a label using aria-labelledby.

Assistive technologies SHOULD enable users to quickly navigate to figures. Mainstream user agents MAY
enable users to quickly navigate to figures.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <figure> in [HTML]

ffiigguurree role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

86 of 298 27/08/2025, 04:00

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: False

A landmark region that contains a collection of items and objects that, as a whole, combine to create a form.

ffoorrmm role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

87 of 298 27/08/2025, 04:00

See related search.

A form may contain a mix of host language form controls, scripted controls, and hyperlinks. Authors are
reminded to use native host language semantics to create form controls whenever possible. If the purpose of a
form is to submit search criteria, authors SHOULD use the search role instead of the generic form role.

Authors MUST give each element with role form a brief label that describes the purpose of the form.
Authors SHOULD reference a visible label with aria-labelledby if a visible label is present. Authors
SHOULD include the label inside of a heading whenever possible. The heading MAY be an instance of the
standard host language heading element or an instance of an element with role heading.

If an author uses a script to submit a form based on a user action that would otherwise not trigger an
onsubmit event (for example, a form submission triggered by the user changing a form element's value), the
author SHOULD provide the user with advance notification of the behavior.

User agents SHOULD treat elements with the role of form as navigational landmarks.

Characteristics:

Characteristic Value

Superclass Role: landmark

Base Concept: <form> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

88 of 298 27/08/2025, 04:00

Characteristic Value
aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: true

A nameless container element that has no semantic meaning on its own.

The generic role is intended for use as the implicit role of generic elements in host languages (such as
HTML div or span), so is primarily for implementors of user agents. Authors SHOULD NOT use this role
in content. Authors MAY use presentation or none to remove implicit accessibility semantics, or a
semantic container role such as group to semantically group descendants in a named container.

Like an element with role presentation, an element with role generic can provide a limited number of
accessible states and properties for its descendants, such as aria-live attributes. However, unlike elements
with role presentation, generic elements are exposed in accessibility APIs so that assistive technologies
can gather certain properties such as layout and bounds.

Characteristics:

Characteristic Value

Superclass Role: structure

Related Concepts: HTML div, HTML span

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

ggeenneerriicc role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

89 of 298 27/08/2025, 04:00

https://html.spec.whatwg.org/multipage/grouping-content.html#the-div-element
https://html.spec.whatwg.org/multipage/grouping-content.html#the-div-element
https://html.spec.whatwg.org/multipage/grouping-content.html#the-div-element
https://html.spec.whatwg.org/multipage/grouping-content.html#the-div-element
https://html.spec.whatwg.org/multipage/grouping-content.html#the-div-element
https://html.spec.whatwg.org/multipage/grouping-content.html#the-div-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-span-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-span-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-span-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-span-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-span-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-span-element

Characteristic Value
aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

Prohibited States and Properties: aria-label

aria-labelledby

aria-roledescription

Name From: prohibited

A composite widget containing a collection of one or more rows with one or more cells where some or all
cells in the grid are focusable by using methods of two-dimensional navigation, such as directional arrow
keys.

The grid role does not imply a specific visual, e.g., tabular, presentation. It describes relationships among
elements. It may be used for purposes as simple as grouping a collection of checkboxes or navigation links or
as complex as creating a full-featured spreadsheet application.

The cell elements of a grid have role gridcell. Authors MAY designate a cell as a row or column header

ggrriidd role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

90 of 298 27/08/2025, 04:00

by using either the rowheader or columnheader role in lieu of the gridcell role. Authors MUST ensure
elements with role gridcell, columnheader, or rowheader are owned by elements with role row, which
are in turn owned by an element with role rowgroup, or grid.

To be keyboard accessible, authors SHOULD manage focus of descendants of a grid as described in
Managing Focus. When a user is navigating the grid content with a keyboard, authors SHOULD set focus
as follows:

• If a gridcell contains a single interactive widget that will not consume arrow key presses when it
receives focus, such as a checkbox, button, or link, authors MAY set focus on the interactive
element contained in that cell. This allows the contained widget to be directly operable.

• Otherwise, authors SHOULD ensure the element that receives focus is a gridcell, rowheader, or
columnheader element.

Authors SHOULD provide a mechanism for changing to an interaction or edit mode that allows users to
navigate and interact with content contained inside a focusable cell if that focusable cell contains any of the
following:

• a widget that requires arrow keys to operate, e.g., a combobox or radiogroup

• multiple interactive elements

• editable content

For example, if a cell in a spreadsheet contains a combobox or editable text, the Enter key might be used to
activate a cell interaction or editing mode when that cell has focus so the directional arrow keys can be used
to operate the contained combobox or textbox. Depending on the implementation, pressing Enter again,
Tab, Escape, or another key may switch the application back to the grid navigation mode.

Authors MAY use a gridcell to display the result of a formula, which could be editable by the user. In a
spreadsheet application, for example, a gridcell may show a value calculated from a formula until the user
activates the gridcell for editing when a textbox appears in the gridcell containing the formula in an
editable state.

If aria-readonly is set on an element with role grid, user agents MUST propagate the value to all
gridcell elements owned by the grid and expose the value in the accessibility API. An author MAY
override the propagated value of aria-readonly for an individual gridcell element.

In a grid that provides cell content editing functions, if the content of a focusable gridcell element is not
editable, authors MAY set aria-readonly to true on the gridcell element. However, the value of
aria-readonly, whether specified for a grid or individual cells, only indicates whether the content
contained in cells is editable. It does not represent availability of functions for navigating or manipulating the
grid itself.

An unspecified value for aria-readonly does not imply that a grid or a gridcell contains editable

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

91 of 298 27/08/2025, 04:00

content. For example, if a grid presents a collection of elements that are not editable, such as a collection of
link elements representing dates in a datepicker, it is not necessary for the author to specify a value for
aria-readonly.

Authors MAY indicate that a focusable gridcell is selectable as the object of an action with the aria-
selected attribute. If the grid allows multiple gridcells to be selected, the author SHOULD set aria-
multiselectable to true on the element with role grid.

Since WAI-ARIA can augment an element of the host language, a grid can reuse the elements and attributes
of a native table, such as an HTML table element. For example, if an author applies the grid role to an
HTML table element, the author does not need to apply the row and gridcell roles to the descendant
HTML tr and td elements because the user agent will automatically make the appropriate translations.
When the author is reusing a native host language table element and needs a gridcell element to span
multiple rows or columns, the author SHOULD apply the appropriate host language attributes instead of
WAI-ARIA aria-rowspan or aria-colspan properties.

See the WAI-ARIA Authoring Practices for additional details on implementing grid design patterns.

Characteristics:

Characteristic Value

Superclass Role: composite

table

Subclass Roles: treegrid

Base Concept: <table> in [HTML]

Required Owned Elements: row

rowgroup→ row

Supported States and Properties: aria-multiselectable

aria-readonly

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-colcount

aria-controls

aria-current (state)

aria-describedby

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

92 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

Characteristic Value
aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-rowcount

Name From: author

Accessible Name Required: True

A cell in a grid or treegrid.

A gridcell may be focusable, editable, and selectable. A gridcell may have relationships such as aria-
controls to address the application of functional relationships.

If an author intends a gridcell to have a row header, column header, or both, and if the relevant headers
cannot be determined from the DOM structure, authors SHOULD explicitly indicate which header cells are
relevant to the gridcell by applying aria-describedby on the gridcell and referencing elements with
role rowheader or columnheader.

ggrriiddcceellll role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

93 of 298 27/08/2025, 04:00

In a treegrid, authors MAY define a gridcell as expandable by using the aria-expanded attribute. If
the aria-expanded attribute is provided, it applies only to the individual cell. It is not a proxy for the
container row, which also can be expanded. The main use case for providing this attribute on a gridcell is
pivot table behavior.

Authors MUST ensure elements with role gridcell are contained in, or owned by, an element with the role
row.

Characteristics:

Characteristic Value

Superclass Role: cell

widget

Subclass Roles: columnheader

rowheader

Base Concept: <td> in [HTML]

Required Context Role: row

Supported States and Properties: aria-disabled

aria-errormessage

aria-expanded

aria-haspopup

aria-invalid

aria-readonly

aria-required

aria-selected

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-colindex

aria-colspan

aria-controls

aria-current (state)

aria-describedby

aria-details

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

94 of 298 27/08/2025, 04:00

Characteristic Value
aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-rowindex

aria-rowspan

Name From: contents

author

A set of user interface objects that is not intended to be included in a page summary or table of contents by
assistive technologies.

Contrast with region, which is a grouping of user interface objects that will be included in a page summary
or table of contents.

Authors SHOULD use a group to form a logical collection of items in a widget, such as children in a tree
widget forming a collection of siblings in a hierarchy. However, when a group is used in the context of a
listbox, authors MUST limit its children to option elements. Therefore, proper handling of group by
authors and assistive technologies is determined by the context in which it is provided.

Authors MAY nest group elements. If a section is significant enough to warrant inclusion in the web page's
table of contents, the author SHOULD assign it a role of region or a standard landmark role.

Characteristics:

Characteristic Value

ggrroouupp role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

95 of 298 27/08/2025, 04:00

Characteristic Value

Superclass Role: section

Subclass Roles: row

select

toolbar

Related Concepts: <fieldset> in [HTML]

Supported States and Properties: aria-activedescendant

aria-disabled

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

96 of 298 27/08/2025, 04:00

Characteristic Value

Name From: author

A heading for a section of the page.

To ensure elements with a role of heading are organized into a logical outline, authors MUST use the
aria-level attribute to indicate the proper nesting level.

Characteristics:

Characteristic Value

Superclass Role: sectionhead

Related Concepts: <h1>, <h2>, <h3>, <h4>, <h5>, and <h6> in [HTML]

Required States and Properties: aria-level

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

hheeaaddiinngg role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

97 of 298 27/08/2025, 04:00

Characteristic Value
aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

A container for a collection of elements that form an image.

An img can contain captions and descriptive text, as well as multiple image files that when viewed together
give the impression of a single image. An img represents a single graphic within a document, whether or not
it is formed by a collection of drawing objects. In order for elements with a role of img to be perceivable,
authors MUST provide a label using the aria-label or aria-labelledby attribute.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

iimmgg role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

98 of 298 27/08/2025, 04:00

Characteristic Value
aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Children Presentational: True

A generic type of widget that allows user input.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: widget

Subclass Roles: checkbox

combobox

option

radio

iinnppuutt role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

99 of 298 27/08/2025, 04:00

Characteristic Value
slider

spinbutton

textbox

Supported States and Properties: aria-disabled

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

iinnsseerrttiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

100 of 298 27/08/2025, 04:00

An insertion contains content that is marked as added or content that is being suggested for addition. See
related deletion.

Insertions are typically used to either mark differences between two versions of content or to designate
content suggested for addition in scenarios where multiple people are revising content.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <ins> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

101 of 298 27/08/2025, 04:00

Characteristic Value

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

A perceivable section containing content that is relevant to a specific, author-specified purpose and
sufficiently important that users will likely want to be able to navigate to the section easily and to have it
listed in a summary of the page. Such a page summary could be generated dynamically by a user agent or
assistive technology.

Authors designate the purpose of the content by assigning a role that is a subclass of the landmark role and,
when needed, by providing a brief, descriptive label.

Elements with a role that is a subclass of the landmark role are known as landmark regions or navigational
landmark regions. Assistive technologies SHOULD enable users to quickly navigate to landmark regions.
Mainstream user agents MAY enable users to quickly navigate to landmark regions.

NOTE

landmark is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: section

Subclass Roles: banner

complementary

contentinfo

form

main

navigation

region

search

llaannddmmaarrkk role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

102 of 298 27/08/2025, 04:00

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: False

An interactive reference to an internal or external resource that, when activated, causes the user agent to

lliinnkk role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

103 of 298 27/08/2025, 04:00

navigate to that resource. See related button.

If this is a native link in the host language (such as an HTML anchor with an href value), activating the link
causes the user agent to navigate to that resource. If this is a simulated link, the web application author is
responsible for managing navigation.

NOTE

If pressing the link triggers an action but does not change browser focus or page location, authors are
advised to consider using the button role instead of the link role.

Characteristics:

Characteristic Value

Superclass Role: command

Related Concepts: <a> in [HTML]

<link> in [HTML]

Supported States and Properties: aria-disabled

aria-expanded

aria-haspopup

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

104 of 298 27/08/2025, 04:00

Characteristic Value
aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

A section containing listitem elements. See related listbox.

Lists contain children whose role is listitem.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: directory

feed

Base Concept: in [HTML]

 in [HTML]

Required Owned Elements: listitem

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in

lliisstt role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

105 of 298 27/08/2025, 04:00

Characteristic Value
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A widget that allows the user to select one or more items from a list of choices. See related combobox and
list.

Items within the list are static and, unlike standard HTML select elements, may contain images. List boxes
contain children whose role is option or elements whose role is group which in turn contains children
whose role is option.

To be keyboard accessible, authors SHOULD manage focus of option descendants for all instances of this
role, as described in Managing Focus.

Elements with the role listbox have an implicit aria-orientation value of vertical.

lliissttbbooxx role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

106 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Superclass Role: select

Related Concepts: list

<select> in [HTML]

Required Owned Elements: group→ option

option

Supported States and Properties: aria-errormessage

aria-expanded

aria-invalid

aria-multiselectable

aria-readonly

aria-required

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

107 of 298 27/08/2025, 04:00

Characteristic Value
aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-orientation is vertical.

A single item in a list or directory.

Authors MUST ensure elements whose role is listitem are contained in, or owned by, an element whose
role is list.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: treeitem

Base Concept: in [HTML]

Required Context Role: directory

list

Supported States and Properties: aria-level

aria-posinset

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

lliissttiitteemm role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

108 of 298 27/08/2025, 04:00

Characteristic Value
aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A type of live region where new information is added in meaningful order and old information may
disappear. See related marquee.

Examples include chat logs, messaging history, game log, or an error log. In contrast to other live regions, in
this role there is a relationship between the arrival of new items in the log and the reading order. The log
contains a meaningful sequence and new information is added only to the end of the log, not at arbitrary
points.

Elements with the role log have an implicit aria-live value of polite.

lloogg role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

109 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-live is polite.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

110 of 298 27/08/2025, 04:00

A landmark containing the main content of a document.

This marks the content that is directly related to or expands upon the central topic of the document. The main
role is a non-obtrusive alternative for "skip to main content" links, where the navigation option to go to the
main content (or other landmarks) is provided by the user agent through a dialog or by assistive technologies.

User agents SHOULD treat elements with the role of main as navigational landmarks.

Within any document or application, the author SHOULD mark no more than one element with the
main role.

NOTE

Because document and application elements can be nested in the DOM, they may have multiple
main elements as DOM descendants, assuming each of those is associated with different document
nodes, either by a DOM nesting (e.g., document within document) or by use of the aria-owns
attribute.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

mmaaiinn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

111 of 298 27/08/2025, 04:00

Characteristic Value
aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A type of live region where non-essential information changes frequently. See related log.

Common usages of marquee include stock tickers and ad banners. The primary difference between a
marquee and a log is that logs usually have a meaningful order or sequence of important content changes.

Elements with the role marquee have an implicit aria-live value of off.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

mmaarrqquueeee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

112 of 298 27/08/2025, 04:00

Characteristic Value
aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Content that represents a mathematical expression.

Content with the role math is intended to be marked up in an accessible format such as MathML [MathML3],
or with another type of textual representation such as TeX or LaTeX, which can be converted to an accessible
format by native browser implementations or a polyfill library.

While it is not ideal to use an image of a mathematical expression, there exists a significant amount of legacy
content where images are used to represent mathematical expressions. Authors SHOULD ensure that images
of math are labeled by text that describes the mathematical expression as it might be spoken.

mmaatthh role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

113 of 298 27/08/2025, 04:00

https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/

NOTE

Browsers that support native implementations of MathML are able to provide a more robust, accessible
math experience than can be accomplished with plain text approximations of math. Some rendering
engines have close integration with screen readers that allow spacial touch exploration of the formula and
refreshable braille display output in the Nemeth Braille format. This level of integration is not supported
with images of mathematical formulas, even if the author provides a plain text approximation.

At the time of this writing, some mainstream browsers do not support MathML natively, and must be
retrofit using a JavaScript polyfill library. When authoring math content, use native MathML wherever
possible, and test thoroughly. Use a polyfill library or provide a fallback image with a text alternative
approximation if necessary.

MathML Example with Embedded TeX Annotation

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

114 of 298 27/08/2025, 04:00

If a rendering engine does not support a native math format such as MathML, authors MAY use JavaScript to
downgrade the content to a format the browser can display, such as this HTML image using a data URI and
plain text alternative.

EXAMPLE 7

<!-- Note: Use a JavaScript polyfill library to ensure
 this renders in user agents that do not support MathML. -->
<!-- The math element has an implicit role="math". -->
<mmaatthh xmlns="http://www.w3.org/1998/Math/MathML">

<mmrrooww>
<mmii>x</mmii>
<mmoo>=</mmoo>
<mmffrraacc>

<mmrrooww>
<mmoo form="prefix">−</mmoo>
<mmii>b</mmii>
<mmoo>±</mmoo>
<mmssqqrrtt>

<mmssuupp>
<mmii>b</mmii>
<mmnn>2</mmnn>

</mmssuupp>
<mmoo>−</mmoo>
<mmnn>4</mmnn>
<mmoo>⁢<!-- ⁢ --></mmoo>
<mmii>a</mmii>
<mmoo>⁢<!-- ⁢ --></mmoo>
<mmii>c</mmii>

</mmssqqrrtt>
</mmrrooww>
<mmrrooww>

<mmnn>2</mmnn>
<mmoo>⁢<!-- ⁢ --></mmoo>
<mmii>a</mmii>

</mmrrooww>
</mmffrraacc>

</mmrrooww>
<aannnnoottaattiioonn encoding="TeX">

 x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
</aannnnoottaattiioonn>

</mmaatthh>

Plain HTML or Polyfill DOM Result of the MathML Quadratic Formula

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

115 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

EXAMPLE 8

<iimmgg role="math" src="..." alt="x=⟮−b±√⟮b²−4ac⟯⟯÷2a">

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

116 of 298 27/08/2025, 04:00

Characteristic Value

Name From: author

Children Presentational: False

An element that represents a scalar measurement within a known range, or a fractional value. See related
progressbar.

Authors MAY set aria-valuemin and aria-valuemax to indicate the minimum and maximum values for
the meter. Otherwise, their implicit values follow the same rules as <input[type="range"]> in [HTML]:

• If aria-valuemin is missing or not a number, it defaults to 0 (zero).

• If aria-valuemax is missing or not a number, it defaults to 100.

The value of aria-valuenow MUST NOT fall below or exceed the computed values of aria-valuemin
and aria-valuemax, respectively.

Authors SHOULD NOT use the meter role to indicate progress; the progressbar role exists to address
that need.

NOTE

Presently, there are no WAI-ARIA properties corresponding to the low, optimum, and high attributes
supported on the <meter> element in [HTML]. The addition of these properties will be considered for
ARIA version 1.3.

Characteristics:

Characteristic Value

Superclass Role: range

Related Concepts: <meter> in [HTML]

Required States and Properties: aria-valuenow

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

mmeetteerr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

117 of 298 27/08/2025, 04:00

Characteristic Value
aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-valuemax

aria-valuemin

aria-valuetext

Name From: author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-valuemin is 0.
Default for aria-valuemax is 100.

A type of widget that offers a list of choices to the user.

A menu is often a list of common actions or functions that the user can invoke. The menu role is appropriate

mmeennuu role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

118 of 298 27/08/2025, 04:00

when a list of menu items is presented in a manner similar to a menu on a desktop application.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this role, as
described in Managing Focus.

Elements with the role menu have an implicit aria-orientation value of vertical.

Characteristics:

Characteristic Value

Superclass Role: select

Subclass Roles: menubar

Related Concepts: list

Required Owned Elements: group→ menuitem

group→ menuitemradio

group→ menuitemcheckbox

menuitem

menuitemcheckbox

menuitemradio

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

119 of 298 27/08/2025, 04:00

Characteristic Value
aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-orientation is vertical.

A presentation of menu that usually remains visible and is usually presented horizontally.

The menubar role is used to create a menu bar similar to those found in Windows, Mac, and Gnome desktop
applications. A menu bar is used to create a consistent set of frequently used commands. Authors SHOULD
ensure that menubar interaction is similar to the typical menu bar interaction in a desktop graphical user
interface.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this role, as
described in Managing Focus.

Elements with the role menubar have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: menu

Related Concepts: toolbar

Required Owned Elements: group→ menuitem

group→ menuitemradio

group→ menuitemcheckbox

mmeennuubbaarr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

120 of 298 27/08/2025, 04:00

Characteristic Value
menuitem

menuitemcheckbox

menuitemradio

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

121 of 298 27/08/2025, 04:00

Characteristic Value

Implicit Value for Role: Default for aria-orientation is horizontal.

An option in a set of choices contained by a menu or menubar.

Authors MAY disable a menu item with the aria-disabled attribute. If the menu item has its aria-
haspopup attribute set to true, it indicates that the menu item may be used to launch a sub-level menu, and
authors SHOULD display a new sub-level menu when the menu item is activated.

In order to identify that they are related widgets, authors MUST ensure that menu items are owned by an
element with role menu or menubar. Authors MAY separate menu items into sets by use of a separator or
an element with an equivalent role from the native markup language.

Characteristics:

Characteristic Value

Superclass Role: command

Subclass Roles: menuitemcheckbox

Related Concepts: listitem

option

Required Context Role: group

menu

menubar

Supported States and Properties: aria-disabled

aria-expanded

aria-haspopup

aria-posinset

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

mmeennuuiitteemm role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

122 of 298 27/08/2025, 04:00

Characteristic Value
aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

A menuitem with a checkable state whose possible values are true, false, or mixed.

The aria-checked attribute of a menuitemcheckbox indicates whether the menu item is checked (true),
unchecked (false), or represents a sub-level menu of other menu items that have a mixture of checked and
unchecked values (mixed).

In order to identify that they are related widgets, authors MUST ensure that menu item checkboxes are
owned by an element with role menu or menubar. Authors MAY separate menu items into sets by use of a
separator or an element with an equivalent role from the native markup language.

mmeennuuiitteemmcchheecckkbbooxx role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

123 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Superclass Role: menuitem

Subclass Roles: menuitemradio

Related Concepts: menuitem

Required Context Role: group

menu

menubar

Required States and Properties: aria-checked

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

124 of 298 27/08/2025, 04:00

Characteristic Value
aria-owns

aria-posinset

aria-relevant

aria-roledescription

aria-setsize

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

A checkable menuitem in a set of elements with the same role, only one of which can be checked at a time.

Authors SHOULD enforce that only one menuitemradio in a group can be checked at the same time. When
one item in the group is checked, the previously checked item becomes unchecked (its aria-checked
attribute becomes false).

In order to identify that they are related widgets, authors MUST ensure that menu item radios are owned by
an element with role menu or menubar, or by a role group which itself is owned by an element with role
menu or menubar.

If a menu or menubar contains more than one group of menuitemradio elements, or if the menu contains
one group and other, unrelated menu items, authors SHOULD contain each set of related menuitemradio
elements in an element using the group role. Authors MAY also delimit the group from other menu items
with an element using the separator role, or an element with an equivalent role from the native markup
language.

Characteristics:

Characteristic Value

Superclass Role: menuitemcheckbox

Related Concepts: menuitem

mmeennuuiitteemmrraaddiioo role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

125 of 298 27/08/2025, 04:00

Characteristic Value

Required Context Role: group

menu

menubar

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-checked (state) (required)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-posinset

aria-relevant

aria-roledescription

aria-setsize

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

126 of 298 27/08/2025, 04:00

Characteristic Value

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

A landmark containing a collection of navigational elements (usually links) for navigating the document or
related documents.

User agents SHOULD treat elements with the role of navigation as navigational landmarks.

Characteristics:

Characteristic Value

Superclass Role: landmark

Related Concepts: <nav> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in

nnaavviiggaattiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

127 of 298 27/08/2025, 04:00

Characteristic Value
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

An element whose implicit native role semantics will not be mapped to the accessibility API. See synonym
presentation.

NOTE

In ARIA 1.1, the working group introduced none as a synonym to the presentation role, due to author
confusion surrounding the intended meaning of the word "presentation" or "presentational." Many
individuals erroneously consider role="presentation" to be synonymous with aria-
hidden="true", and we believe role="none" conveys the actual meaning more unambiguously.

A section whose content is parenthetic or ancillary to the main content of the resource.

Characteristics:

Characteristic Value

Superclass Role: section

nnoonnee role

Note regarding the ARIA 1.1 none role.

nnoottee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

128 of 298 27/08/2025, 04:00

Characteristic Value

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A selectable item in a listbox.

Authors MUST ensure elements with role option are contained in, or owned by, an element with the role

ooppttiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

129 of 298 27/08/2025, 04:00

listbox or group within a listbox. Options not associated with a listbox might not be correctly
mapped to an accessibility API.

Elements with the role option have an implicit aria-selected value of false.

Characteristics:

Characteristic Value

Superclass Role: input

Subclass Roles: treeitem

Base Concept: <option> in [HTML]

Related Concepts: listitem

Required Context Role: group

listbox

Required States and Properties: aria-selected

Supported States and Properties: aria-checked

aria-posinset

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

130 of 298 27/08/2025, 04:00

Characteristic Value
aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-selected is false.

A paragraph of content.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <p> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

ppaarraaggrraapphh role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

131 of 298 27/08/2025, 04:00

Characteristic Value
aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

An element whose implicit native role semantics will not be mapped to the accessibility API. See synonym
none.

pprreesseennttaattiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

132 of 298 27/08/2025, 04:00

NOTE

In ARIA 1.1, the working group introduced none as a synonym to the presentation role, due to author
confusion surrounding the intended meaning of the word "presentation" or "presentational." Many
individuals erroneously consider role="presentation" to be synonymous with aria-
hidden="true", and we believe role="none" conveys the actual meaning more unambiguously.

Until implementations include sufficient support for role="none", web authors are advised to use the
presentation role alone role="presentation" or redundantly as a fallback to the none role
role="none presentation".

The intended use is when an element is used to change the look of the page but does not have all the
functional, interactive, or structural relevance implied by the element type, or may be used to provide for an
accessible fallback in older browsers that do not support WAI-ARIA.

Example use cases:

• An element whose content is completely presentational (like a spacer image, decorative graphic, or
clearing element);

• An image that is in a container with the img role and where the full text alternative is available and is
marked up with aria-labelledby and (if needed) aria-describedby;

• An element used as an additional markup "hook" for CSS; or

• A layout table and/or any of its associated rows, cells, etc.

For any element with a role of presentation and which is not focusable, the user agent MUST NOT expose
the implicit native semantics of the element (the role and its states and properties) to accessibility APIs.
However, the user agent MUST expose content and descendant elements that do not have an explicit or
inherited role of presentation. Thus, the presentation role causes a given element to be treated as having
no role or to be removed from the accessibility tree, but does not cause the content contained within the
element to be removed from the accessibility tree.

For example, according to an accessibility API, the following markup elements would appear to have
identical role semantics (no role) and identical content.

Note regarding the ARIA 1.1 none role.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

133 of 298 27/08/2025, 04:00

The presentation role is used on an element that has implicit native semantics, meaning that there is a
default accessibility API role for the element. Some elements are only complete when additional descendant
elements are provided. For example, in HTML, table elements (matching the table role) require tr
descendants (the row role), which in turn require th or td children (the cell, columnheader, rowheader
roles). Similarly, lists require list item children. The descendant elements that complete the semantics of an
element are described in WAI-ARIA as required owned elements.

When an explicit or inherited role of presentation is applied to an element with the implicit semantic of a
WAI-ARIA role that has required owned elements, in addition to the element with the explicit role of
presentation, the user agent MUST apply an inherited role of presentation to any owned elements that do
not have an explicit role defined. Also, when an explicit or inherited role of presentation is applied to a host
language element which has required children as defined by the host language specification, in addition to the
element with the explicit role of presentation, the user agent MUST apply an inherited role of presentation to
any required children that do not have an explicit role defined.

In HTML, the element is treated as a single entity regardless of the type of image file. Consequently,
using role="presentation" or role="none" on an HTML img is equivalent to using aria-
hidden="true". In order to make the image contents accessible, authors can embed the object using an
<object> or <iframe> element, or use inline SVG code, and follow the accessibility guidelines for the
image content.

For any element with an explicit or inherited role of presentation and which is not focusable, user agents
MUST ignore role-specific WAI-ARIA states and properties for that element. For example, in HTML, a ul or
ol element with a role of presentation will have the implicit native semantics of its li elements removed
because the list role to which the ul or ol corresponds has a required owned element of listitem.
Likewise, the implicit native semantics of an HTML table element's thead/tbody/tfoot/tr/th/td
descendants will also be removed, because the HTML specification indicates that these are required structural
descendants of the table element.

EXAMPLE 9

<!-- 1. [role="presentation"] negates the implicit 'heading' role semantics but does not affect the contents. --
<hh11 role="presentation"> Sample Content </hh11>

<!-- 2. There is no implicit role for span, so only the contents are exposed. -->
<ssppaann> Sample Content </ssppaann>

<!-- 3. Depending on styling and other factors, this role declaration is redundant in some implementations. -->
<ssppaann role="presentation"> Sample Content </ssppaann>

<!-- 4. In all cases, the element contents are exposed to accessibility APIs without any implied role semantics.
<!-- <> --> Sample Content <!-- </> -->

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

134 of 298 27/08/2025, 04:00

NOTE

Only the implicit native semantics of elements that correspond to WAI-ARIA required owned elements
are removed. All other content remains intact, including nested tables or lists, unless those elements also
have an explicit role of presentation applied.

For example, according to an accessibility API, the following markup elements would appear to have
identical role semantics (no roles) and identical content.

NOTE

There are other WAI-ARIA roles with required children for which this situation is applicable (e.g.,
radiogroups and listboxes), but tables and lists are the most common real-world cases in which the
presentation inheritance is likely to apply.

For any element with an explicit or inherited role of presentation, user agents MUST apply an inherited
role of presentation to all host-language-specific labeling elements for the presentational element. For
example, a table element with a role of presentation will have the implicit native semantics of its
caption element removed, because the caption is merely a label for the presentational table.

Authors SHOULD NOT provide meaningful alternative text (for example, use alt="" in HTML) when the
presentation role is applied to an image.

In the following code sample, the containing img and is appropriately labeled by the caption paragraph. In
this example the img element can be marked as presentation because the role and the text alternatives are
provided by the containing element.

EXAMPLE 10

<!-- 1. [role="presentation"] negates the implicit 'list' and 'listitem' role semantics but does not affect the
<uull role="presentation">

<llii> Sample Content </llii>
<llii> More Sample Content </llii>

</uull>

<!-- 2. There is no implicit role for "foo", so only the contents are exposed. -->
<ffoooo>

<ffoooo> Sample Content </ffoooo>
<ffoooo> More Sample Content </ffoooo>

</ffoooo>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

135 of 298 27/08/2025, 04:00

In the following code sample, because the anchor (HTML a element) is acting as the treeitem, the list item
(HTML li element) is assigned an explicit WAI-ARIA role of presentation to override the user agent's
implicit native semantics for list items.

There are a number of ways presentational role conflicts are resolved.

User agents MUST NOT expose elements having explicit or inherited presentational role in the accessibility
tree, with these exceptions:

• If an element is focusable, or otherwise interactive, user agents MUST ignore the presentation role
and expose the element with its implicit role, in order to ensure that the element is operable.

• If a required owned element has an explicit non-presentational role, user agents MUST ignore an
inherited presentational role and expose the element with its explicit role. If the action of exposing the
explicit role causes the accessibility tree to be malformed, the expected results are undefined.

• If an element has global WAI-ARIA states or properties, user agents MUST ignore the presentation
role and expose the element with its implicit role. However, if an element has only non-global, role-
specific WAI-ARIA states or properties, the element MUST NOT be exposed unless the presentational
role is inherited and an explicit non-presentational role is applied.

For example, aria-describedby is a global attribute and would always be applied; aria-level is not a
global attribute and would therefore only apply if the element was not in a presentational state.

EXAMPLE 11

<ddiivv role="img" aria-labelledby="caption">
<iimmgg src="example.png" role="presentation" alt="">
<pp id="caption">A visible text caption labeling the image.</pp>

</ddiivv>

EXAMPLE 12

<uull role="tree">
<llii role="presentation">

<aa role="treeitem" aria-expanded="true">An expanded tree node</aa>
</llii>

 …
</uull>

Presentational Roles Conflict Resolution

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

136 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Superclass Role: structure

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

EXAMPLE 13

<!-- 1. [role="presentation"] is ignored due to the global aria-describedby property. -->
<hh11 role="presentation" aria-describedby="comment-1"> Sample Content </hh11>
<!-- 2. [role="presentation"] negates both the implicit 'heading' and the non-global aria-level. -->
<hh11 role="presentation" aria-level="2"> Sample Content </hh11>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

137 of 298 27/08/2025, 04:00

Characteristic Value

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

An element that displays the progress status for tasks that take a long time.

A progressbar indicates that the user's request has been received and the application is making progress
toward completing the requested action.

Authors MAY set aria-valuemin and aria-valuemax to indicate the minimum and maximum progress
indicator values. Otherwise, their implicit values follow the same rules as <input[type="range"]> in
[HTML]:

• If aria-valuemin is missing or not a number, it defaults to 0 (zero).

• If aria-valuemax is missing or not a number, it defaults to 100.

The author SHOULD supply a value for aria-valuenow unless the value is indeterminate, in which case
the author SHOULD omit the aria-valuenow attribute. Authors SHOULD update this value when the
visual progress indicator is updated. If the progressbar is describing the loading progress of a particular
region of a page, the author SHOULD use aria-describedby to point to the status, and set the aria-
busy attribute to true on the region until it is finished loading. It is not possible for the user to alter the
value of a progressbar because it is always read-only.

NOTE

Assistive technologies generally will render the value of aria-valuenow as a percent of a range
between the value of aria-valuemin and aria-valuemax, unless aria-valuetext is specified.

Characteristics:

Characteristic Value

Superclass Role: range

widget

Related Concepts: status

Inherited States and Properties: aria-atomic

pprrooggrreessssbbaarr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

138 of 298 27/08/2025, 04:00

Characteristic Value
aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-valuemax

aria-valuemin

aria-valuenow

aria-valuetext

Name From: author

Accessible Name Required: True

Children Presentational: True

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

139 of 298 27/08/2025, 04:00

Characteristic Value

Implicit Value for Role: Default for aria-valuemin is 0.
Default for aria-valuemax is 100.

A checkable input in a group of elements with the same role, only one of which can be checked at a time.

Authors SHOULD ensure that elements with role radio are explicitly grouped in order to indicate which
ones affect the same value. This is achieved by enclosing the radio elements in an element with role
radiogroup. If it is not possible to make the radio buttons DOM children of the radiogroup, authors
SHOULD use the aria-owns attribute on the radiogroup element to indicate the relationship to its
children.

Characteristics:

Characteristic Value

Superclass Role: input

Related Concepts: <input[type="radio"]> in [HTML]

Required States and Properties: aria-checked

Supported States and Properties: aria-posinset

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

rraaddiioo role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

140 of 298 27/08/2025, 04:00

Characteristic Value
aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

A group of radio buttons.

A radiogroup is a type of select list that can only have a single entry checked at any one time. Authors
SHOULD enforce that only one radio button in a group can be checked at the same time. When one item in
the group is checked, the previously checked item becomes unchecked (its aria-checked attribute becomes
false).

Characteristics:

Characteristic Value

Superclass Role: select

Related Concepts: list

Required Owned Elements: radio

Supported States and Properties: aria-errormessage

aria-invalid

rraaddiiooggrroouupp role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

141 of 298 27/08/2025, 04:00

Characteristic Value
aria-readonly

aria-required

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

An element representing a range of values.

rraannggee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

142 of 298 27/08/2025, 04:00

NOTE

range is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: structure

Subclass Roles: meter

progressbar

scrollbar

slider

spinbutton

Supported States and Properties: aria-valuemax

aria-valuemin

aria-valuenow

aria-valuetext

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

143 of 298 27/08/2025, 04:00

Characteristic Value
aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A landmark containing content that is relevant to a specific, author-specified purpose and sufficiently
important that users will likely want to be able to navigate to the section easily and to have it listed in a
summary of the page. Such a page summary could be generated dynamically by a user agent or assistive
technology.

Authors SHOULD limit use of the region role to sections containing content with a purpose that is not
accurately described by one of the other landmark roles, such as main, complementary, or navigation.

Authors MUST give each element with role region a brief label that describes the purpose of the content in
the region. Authors SHOULD reference a visible label with aria-labelledby if a visible label is present.
Authors SHOULD include the label inside of a heading whenever possible. The heading MAY be an instance
of the standard host language heading element or an instance of an element with role heading.

Assistive technologies SHOULD enable users to quickly navigate to elements with role region. Mainstream
user agents MAY enable users to quickly navigate to elements with role region.

Characteristics:

Characteristic Value

Superclass Role: landmark

Related Concepts: <section> in [HTML]

Inherited States and Properties: aria-atomic

rreeggiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

144 of 298 27/08/2025, 04:00

Characteristic Value
aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

The base role from which all other roles inherit.

Properties of this role describe the structural and functional purpose of objects that are assigned this role. A

rroolleettyyppee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

145 of 298 27/08/2025, 04:00

role is a concept that can be used to understand and operate instances.

NOTE

roletype is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Subclass Roles: structure

widget

window

Supported States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (Global use deprecated in
ARIA 1.2)

aria-dropeffect

aria-errormessage (Global use deprecated in ARIA
1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (Global use deprecated in ARIA 1.2)

aria-hidden (state)

aria-invalid (state) (Global use deprecated in
ARIA 1.2)

aria-keyshortcuts

aria-label (Except where prohibited)

aria-labelledby (Except where prohibited)

aria-live

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

146 of 298 27/08/2025, 04:00

Characteristic Value
aria-owns

aria-relevant

aria-roledescription

Name From: n/a

A row of cells in a tabular container.

Rows contain cell or gridcell elements, and thus serve to organize a table, grid, or treegrid.

While the row role can be used in a table, grid, or treegrid, the semantics of aria-expanded, aria-
posinset, aria-setsize, and aria-level are only applicable to the hierarchical structure of an
interactive tree grid. Therefore, authors MUST NOT apply aria-expanded, aria-posinset, aria-
setsize, and aria-level to a row that descends from a table or grid, and user agents SHOULD NOT
expose any of these four properties to assistive technologies unless the row descends from a treegrid.

Authors MUST ensure elements with role row are contained in, or owned by, an element with the role
table, grid, rowgroup, or treegrid.

NOTE: Usage of aria-disabled

While aria-disabled is currently supported on row, in a future version the working group plans to
prohibit its on elements with role row except when the element is in the context of a grid or treegrid.

Characteristics:

Characteristic Value

Superclass Role: group

widget

Base Concept: <tr> in [HTML]

Required Context Role: grid

rowgroup

table

treegrid

rrooww role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

147 of 298 27/08/2025, 04:00

Characteristic Value

Required Owned Elements: cell

columnheader

gridcell

rowheader

Supported States and Properties: aria-colindex

aria-expanded

aria-level

aria-posinset

aria-rowindex

aria-setsize

aria-selected

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

148 of 298 27/08/2025, 04:00

Characteristic Value
aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

A structure containing one or more row elements in a tabular container.

The rowgroup role establishes a relationship between owned row elements. It is a structural equivalent to
the thead, tfoot, and tbody elements in an HTML table element.

Authors MUST ensure elements with role rowgroup are contained in, or owned by, an element with the role
grid, table, or treegrid.

NOTE

The rowgroup role exists, in part, to support role symmetry in HTML, and allows for the propagation of
presentation inheritance on HTML table elements with an explicit presentation role applied.

NOTE

This role does not differentiate between types of row groups (e.g., thead vs. tbody), but an issue has
been raised for WAI-ARIA 2.0.

Characteristics:

Characteristic Value

Superclass Role: structure

Base Concept: <tbody>, <tfoot> and <thead>in [HTML]

Required Context Role: grid

table

rroowwggrroouupp role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

149 of 298 27/08/2025, 04:00

Characteristic Value
treegrid

Required Owned Elements: row

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

rroowwhheeaaddeerr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

150 of 298 27/08/2025, 04:00

A cell containing header information for a row.

The rowheader role can be used to identify a cell as a header for a row in a table, grid, or treegrid.
The rowheader establishes a relationship between it and all cells in the corresponding row. It is a structural
equivalent to setting scope="row" on an HTML th element.

Authors MUST ensure elements with role rowheader are contained in, or owned by, an element with the
role row.

Applying the aria-selected state on a rowheader MUST NOT cause the user agent to automatically
propagate the aria-selected state to all the cells in the corresponding row. An author MAY choose to
propagate selection in this manner depending on the specific application.

While the rowheader role can be used in both interactive grids and non-interactive tables, the use of aria-
expanded, aria-readonly, and aria-required is only applicable to interactive elements. Therefore,
authors SHOULD NOT use aria-expanded, aria-readonly, or aria-required in a rowheader that
descends from a table, and user agents SHOULD NOT expose these properties to assistive technologies
unless the rowheader descends from a grid or treegrid.

NOTE: Usage of aria-disabled

While aria-disabled is currently supported on rowheader, in a future version the working group
plans to prohibit its use on elements with role rowheader except when the element is in the context of a
grid or treegrid.

Characteristics:

Characteristic Value

Superclass Role: cell

gridcell

sectionhead

Base Concept: <th[scope="row"]> in [HTML]

Required Context Role: row

Supported States and Properties: aria-expanded

aria-sort

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-colindex

aria-colspan

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

151 of 298 27/08/2025, 04:00

Characteristic Value
aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-readonly

aria-relevant

aria-required

aria-roledescription

aria-rowindex

aria-rowspan

aria-selected (state)

Name From: contents

author

Accessible Name Required: True

ssccrroollllbbaarr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

152 of 298 27/08/2025, 04:00

A graphical object that controls the scrolling of content within a viewing area, regardless of whether the
content is fully displayed within the viewing area.

A scrollbar represents the current value and range of possible values via the size of the scrollbar and position
of the thumb with respect to the visible range of the orientation (horizontal or vertical) it controls. Its
orientation represents the orientation of the scrollbar and the scrolling effect on the viewing area controlled
by the scrollbar. It is typically possible to add or subtract to the current value by using directional keys such
as arrow keys.

Authors MUST set the aria-controls attribute on the scrollbar element to reference the scrollable area it
controls.

Authors MAY set aria-valuemin and aria-valuemax to indicate the minimum and maximum thumb
position. Otherwise, their implicit values follow the same rules as <input[type="range"]> in [HTML]:

• If aria-valuemin is missing or not a number, it defaults to 0 (zero).

• If aria-valuemax is missing or not a number, it defaults to 100.

Authors MUST set the aria-valuenow attribute to indicate the current thumb position. If aria-valuenow is
missing or has an unexpected value, browsers MAY implement the repair techniques specified in the section
describing handling author errors in states and properties, which are equivalent to the repair techniques for
<input[type="range"]> in [HTML].

Elements with the role scrollbar have an implicit aria-orientation value of vertical.

NOTE

Assistive technologies generally will render the value of aria-valuenow as a percent of a range
between the value of aria-valuemin and aria-valuemax, unless aria-valuetext is specified. It is
best to set the values for aria-valuemin, aria-valuemax, and aria-valuenow in a manner that is
appropriate for this calculation.

Characteristics:

Characteristic Value

Superclass Role: range

widget

Required States and Properties: aria-controls

aria-valuenow

Supported States and Properties: aria-disabled

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

153 of 298 27/08/2025, 04:00

Characteristic Value
aria-orientation

aria-valuemax

aria-valuemin

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-valuetext

Name From: author

Accessible Name Required: False

Children Presentational: True

Implicit Value for Role: Default for aria-orientation is vertical.
Default for aria-valuemin is 0.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

154 of 298 27/08/2025, 04:00

Characteristic Value
Default for aria-valuemax is 100.

A landmark region that contains a collection of items and objects that, as a whole, combine to create a
search facility. See related form and searchbox.

A search region may be a mix of host language form controls, scripted controls, and hyperlinks.

User agents SHOULD treat elements with the role of search as navigational landmarks.

Characteristics:

Characteristic Value

Superclass Role: landmark

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

sseeaarrcchh role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

155 of 298 27/08/2025, 04:00

Characteristic Value
aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A type of textbox intended for specifying search criteria. See related textbox and search.

Characteristics:

Characteristic Value

Superclass Role: textbox

Base Concept: <input[type="search"]> in [HTML]

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-autocomplete

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup

aria-hidden (state)

aria-invalid (state)

sseeaarrcchhbbooxx role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

156 of 298 27/08/2025, 04:00

Characteristic Value
aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-multiline

aria-owns

aria-placeholder

aria-readonly

aria-relevant

aria-required

aria-roledescription

Name From: author

Accessible Name Required: True

A renderable structural containment unit in a document or application.

NOTE

section is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: structure

Subclass Roles: alert

blockquote

caption

cell

code

definition

sseeccttiioonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

157 of 298 27/08/2025, 04:00

Characteristic Value
deletion

emphasis

figure

group

img

insertion

landmark

list

listitem

log

marquee

math

note

paragraph

status

strong

subscript

superscript

table

tabpanel

term

time

tooltip

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

158 of 298 27/08/2025, 04:00

Characteristic Value
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: n/a

A structure that labels or summarizes the topic of its related section.

NOTE

sectionhead is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: structure

sseeccttiioonnhheeaadd role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

159 of 298 27/08/2025, 04:00

Characteristic Value

Subclass Roles: columnheader

heading

rowheader

tab

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

160 of 298 27/08/2025, 04:00

Characteristic Value
author

A form widget that allows the user to make selections from a set of choices.

NOTE

select is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: composite

group

Subclass Roles: listbox

menu

radiogroup

tree

Supported States and Properties: aria-orientation

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

sseelleecctt role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

161 of 298 27/08/2025, 04:00

Characteristic Value
aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A divider that separates and distinguishes sections of content or groups of menuitems.

There are two types of separators: a static structure that provides only a visible boundary and a focusable,
interactive widget that is also moveable. If a separator is not focusable, it is revealed to assistive
technologies as a static structural element. For example, a static separator can be used to help visually
divide two groups of menu items in a menu or to provide a horizontal rule between two sections of a page.

Authors MAY make a separator focusable to create a widget that both provides a visible boundary
between two sections of content and enables the user to change the relative size of the sections by changing
the position of the separator. A variable separator widget can be moved continuously within a range,
whereas a fixed separator widget supports only two discrete positions. Typically, a fixed separator
widget is used to toggle one of the sections between expanded and collapsed states.

If the separator is focusable, authors MUST set the value of aria-valuenow to a number reflecting the
current position of the separator and update that value when it changes. Authors SHOULD also provide
the value of aria-valuemin if it is not 0 and the value of aria-valuemax if it is not 100. If missing or not
a number, the implicit values of these attributes are as follows:

• The implicit value of aria-valuemin is 0.

sseeppaarraattoorr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

162 of 298 27/08/2025, 04:00

• The implicit value of aria-valuemax is 100.

In applications where there is more than one focusable separator, authors SHOULD provide an accessible
name for each one.

Elements with the role separator have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: structure (if not focusable)

widget (if focusable)

Related Concepts: <hr> in [HTML]

Required States and Properties: aria-valuenow (if focusable)

Supported States and Properties: aria-disabled (if focusable)

aria-orientation

aria-valuemax (if focusable)

aria-valuemin (if focusable)

aria-valuetext (if focusable)

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

163 of 298 27/08/2025, 04:00

Characteristic Value
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Children Presentational: True

Implicit Value for Role: Default for aria-orientation is horizontal.
Default for aria-valuemin is 0.
Default for aria-valuemax is 100.

An input where the user selects a value from within a given range.

A slider represents the current value and range of possible values via the size of the slider and position of the
thumb. It is typically possible to add or subtract to the value by using directional keys such as arrow keys.

Authors MAY set the aria-valuemin and aria-valuemax attributes. Otherwise, their implicit values
follow the same rules as <input[type="range"]> in [HTML]:

• If aria-valuemin is missing or not a number, it defaults to 0 (zero).

• If aria-valuemax is missing or not a number, it defaults to 100.

Authors MUST set the aria-valuenow attribute. If aria-valuenow is missing or has an unexpected value,
browsers MAY implement the repair techniques specified in the section describing handling author errors in
states and properties, which are equivalent to the repair techniques for <input[type="range"]> in
[HTML].

Elements with the role slider have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

sslliiddeerr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

164 of 298 27/08/2025, 04:00

Characteristic Value

Superclass Role: input

range

Required States and Properties: aria-valuenow

Supported States and Properties: aria-errormessage

aria-haspopup

aria-invalid

aria-orientation

aria-readonly

aria-valuemax

aria-valuemin

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

aria-valuetext

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

165 of 298 27/08/2025, 04:00

Characteristic Value

Name From: author

Accessible Name Required: True

Children Presentational: True

Implicit Value for Role: Default for aria-orientation is horizontal.
Default for aria-valuemin is 0.
Default for aria-valuemax is 100.

A form of range that expects the user to select from among discrete choices.

A spinbutton typically allows users to change its displayed value by activating increment and decrement
buttons that step through a set of allowed values. Some implementations display the value in an text field that
allows editing and typing but typically limits input in ways that help prevent invalid values.

Although a spinbutton is similar in appearance to many presentations of select, it is advisable to use
spinbutton when working with known ranges (especially in the case of large ranges) as opposed to distinct
options. For example, a spinbutton representing a range from 1 to 1,000,000 would provide much better
performance than a select widget representing the same values.

Authors MAY create a spinbutton with children or owned elements, but MUST limit those elements to a
textbox and/or two buttons. Alternatively, authors MAY apply the spinbutton role to a text input and
create sibling buttons to support the increment and decrement functions.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this role, as
described in Managing Focus. When a spinbutton receives focus, authors SHOULD ensure focus is placed
on the textbox element if one is present, and on the spinbutton itself otherwise. Authors SHOULD also
ensure the up and down arrows on a keyboard perform the increment and decrement functions and that the
increment and decrement button elements are NOT included in the primary navigation ring, e.g., the Tab
ring in HTML.

Authors SHOULD set the aria-valuenow attribute when the spinbutton has a value. Authors SHOULD
set the aria-valuemin attribute when there is a minimum value, and the aria-valuemax attribute when
there is a maximum value.

Characteristics:

Characteristic Value

Superclass Role: composite

input

ssppiinnbbuuttttoonn role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

166 of 298 27/08/2025, 04:00

Characteristic Value
range

Supported States and Properties: aria-errormessage

aria-invalid

aria-readonly

aria-required

aria-valuemax

aria-valuemin

aria-valuenow

aria-valuetext

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

167 of 298 27/08/2025, 04:00

Characteristic Value

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-valuemin is that there is no
minimum value.
Default for aria-valuemax is that there is no
maximum value.
Default for aria-valuenow is 0

A type of live region whose content is advisory information for the user but is not important enough to justify

ssttaattuuss role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

168 of 298 27/08/2025, 04:00

an alert, often but not necessarily presented as a status bar.

Authors SHOULD ensure an element with role status does not receive focus as a result of change in status.

Status is a form of live region. If another part of the page controls what appears in the status, authors
SHOULD make the relationship explicit with the aria-controls attribute.

Assistive technologies MAY reserve some cells of a Braille display to render the status.

Elements with the role status have an implicit aria-live value of polite and an implicit aria-atomic
value of true.

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: timer

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

169 of 298 27/08/2025, 04:00

Characteristic Value
aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-live is polite.
Default for aria-atomic is true.

Content that is important, serious, or urgent. See related emphasis.

The purpose of the strong role is to communicate strong importance, seriousness, or urgency. It is not for
communicating changes in typographical presentation that are not important to the meaning of the content.
Authors SHOULD use the strong role only if its absence would change the meaning of the content.

The strong role is not intended to convey stress or emphasis; for that purpose, the emphasis role is more
appropriate.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in

ssttrroonngg role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

170 of 298 27/08/2025, 04:00

Characteristic Value
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

A document structural element.

Roles for document structure support the accessibility of dynamic web content by helping assistive
technologies determine active content versus static document content. Structural roles by themselves do not
all map to accessibility APIs, but are used to create widget roles or assist content adaptation for assistive
technologies.

NOTE

structure is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: roletype

ssttrruuccttuurree role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

171 of 298 27/08/2025, 04:00

Characteristic Value

Subclass Roles: application

document

generic

presentation

range

rowgroup

section

sectionhead

separator

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

172 of 298 27/08/2025, 04:00

Characteristic Value
aria-owns

aria-relevant

aria-roledescription

Name From: n/a

One or more subscripted characters. See related superscript.

The subscript role is intended to be used only to mark up typographical conventions that have specific
meanings; not for typographical presentation for presentation's sake. In general, authors SHOULD use this
role only if the absence of the subscript would change the meaning of the content.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <sub> and <sup> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

ssuubbssccrriipptt role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

173 of 298 27/08/2025, 04:00

Characteristic Value
aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

One or more superscripted characters. See related superscript.

The superscript role is intended to be used only to mark up typographical conventions that have specific
meanings; not for typographical presentation for presentation's sake. In general, authors SHOULD use this
role only if the absence of the superscript would change the meaning of the content.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <sub> and <sup> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

ssuuppeerrssccrriipptt role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

174 of 298 27/08/2025, 04:00

Characteristic Value
aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-live

aria-owns

aria-relevant

aria-roledescription

Prohibited States and Properties: aria-label

aria-labelledby

Name From: prohibited

A type of checkbox that represents on/off values, as opposed to checked/unchecked values. See related
checkbox.

The aria-checked attribute of a switch indicates whether the input is on (true) or off (false). The
mixed value is invalid, and user agents MUST treat a mixed value as equivalent to false for this role.

NOTE

A switch provides approximately the same functionality as a checkbox and toggle button, but makes
it possible for assistive technologies to present the widget in a fashion consistent with its on-screen
appearance.

Characteristics:

Characteristic Value

sswwiittcchh role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

175 of 298 27/08/2025, 04:00

Characteristic Value

Superclass Role: checkbox

Related Concepts: button

Required States and Properties: aria-checked

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-expanded (state)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-readonly

aria-relevant

aria-required

aria-roledescription

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

176 of 298 27/08/2025, 04:00

Characteristic Value

Name From: contents

author

Accessible Name Required: True

Children Presentational: True

A grouping label providing a mechanism for selecting the tab content that is to be rendered to the user.

If a tabpanel or item in a tabpanel has focus, the associated tab is the currently active tab in the
tablist, as defined in Managing Focus. tablist elements, which contain a set of associated tab elements,
are typically placed near a series of tabpanel elements, usually preceding it. See the WAI-ARIA Authoring
Practices for details on implementing a tab set design pattern.

Authors MUST ensure elements with role tab are contained in, or owned by, an element with the role
tablist.

Authors SHOULD ensure the tabpanel associated with the currently active tab is perceivable to the user.

For a single-selectable tablist, authors SHOULD hide other tabpanel elements from the user until the
user selects the tab associated with that tabpanel. For a multi-selectable tablist, authors SHOULD ensure
that the tab for each visible tabpanel has the aria-expanded attribute set to true, and that the tabs
associated with the remaining hidden tabpanel elements have their aria-expanded attributes set to
false.

In either case, authors SHOULD ensure that a selected tab has its aria-selected attribute set to true, that
inactive tab elements have their aria-selected attribute set to false, and that the currently selected tab
provides a visual indication that it is selected. In the absence of an aria-selected attribute on the current
tab, user agents SHOULD indicate to assistive technologies through the platform accessibility API that the
currently focused tab is selected.

Characteristics:

Characteristic Value

Superclass Role: sectionhead

widget

Required Context Role: tablist

Supported States and Properties: aria-disabled

ttaabb role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

177 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

Characteristic Value
aria-expanded

aria-haspopup

aria-posinset

aria-selected

aria-setsize

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Children Presentational: True

Implicit Value for Role: Default for aria-selected is false.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

178 of 298 27/08/2025, 04:00

A section containing data arranged in rows and columns. See related grid.

The table role is intended for tabular containers which are not interactive. If the tabular container maintains
a selection state, provides its own two-dimensional navigation, or allows the user to rearrange or otherwise
manipulate its contents or the display thereof, authors SHOULD use grid or treegrid instead.

Authors SHOULD prefer the use of the host language's semantics for table whenever possible, such as the
<table> element in [HTML].

Characteristics:

Characteristic Value

Superclass Role: section

Subclass Roles: grid

Base Concept: <table> in [HTML]

Required Owned Elements: row

rowgroup→ row

Supported States and Properties: aria-colcount

aria-rowcount

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA

ttaabbllee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

179 of 298 27/08/2025, 04:00

Characteristic Value
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

A list of tab elements, which are references to tabpanel elements.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this role, as
described in Managing Focus.

For a single-selectable tablist, authors SHOULD hide other tabpanel elements from the user until the
user selects the tab associated with that tabpanel. For a multi-selectable tablist, authors SHOULD ensure
each visible tabpanel has its aria-expanded attribute set to true, and that the remaining hidden
tabpanel elements have their aria-expanded attributes set to false.

tablist elements are typically placed near usually preceding, a series of tabpanel elements. See the WAI-
ARIA Authoring Practices for details on implementing a tab set design pattern.

Elements with the role tablist have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: composite

Required Owned Elements: tab

ttaabblliisstt role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

180 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

Characteristic Value

Supported States and Properties: aria-multiselectable

aria-orientation

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-orientation is horizontal.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

181 of 298 27/08/2025, 04:00

A container for the resources associated with a tab, where each tab is contained in a tablist.

Authors SHOULD associate a tabpanel element with its tab, either by using the aria-controls
attribute on the tab to reference the tab panel, or by using the aria-labelledby attribute on the tab panel to
reference the tab.

tablist elements are typically placed near, usually preceding, a series of tabpanel elements. See the WAI-
ARIA Authoring Practices for details on implementing a tab set design pattern.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

ttaabbppaanneell role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

182 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

Characteristic Value
aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Name Required: True

A word or phrase with a corresponding definition. See related definition.

The term role is used to explicitly identify a word or phrase for which a definition has been provided by
the author or is expected to be provided by the user.

Authors SHOULD NOT use the term role on interactive elements such as links because doing so could
prevent users of assistive technologies from interacting with those elements.

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <dfn> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

tteerrmm role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

183 of 298 27/08/2025, 04:00

Characteristic Value
aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A type of input that allows free-form text as its value.

If the aria-multiline attribute is true, the widget accepts line breaks within the input, as in an HTML
textarea. Otherwise, this is a simple text box. The intended use is for languages that do not have a text
input element, or cases in which an element with different semantics is repurposed as a text field.

NOTE

In most user agent implementations, the default behavior of the ENTER or RETURN key is different
between the single-line and multi-line text fields in HTML. When user has focus in a single-line <input
type="text"> element, the keystroke usually submits the form. When user has focus in a multi-line
<textarea> element, the keystroke inserts a line break. The WAI-ARIA textbox role differentiates
these types of boxes with the aria-multiline attribute, so authors are advised to be aware of this
distinction when designing the field.

Characteristics:

Characteristic Value

Superclass Role: input

Subclass Roles: searchbox

tteexxttbbooxx role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

184 of 298 27/08/2025, 04:00

Characteristic Value

Related Concepts: <textarea> in [HTML]

<input[type="text"]> in [HTML]

Supported States and Properties: aria-activedescendant

aria-autocomplete

aria-errormessage

aria-haspopup

aria-invalid

aria-multiline

aria-placeholder

aria-readonly

aria-required

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

185 of 298 27/08/2025, 04:00

Characteristic Value

Name From: author

Accessible Name Required: True

An element that represents a specific point in time.

NOTE

At the present time, there are no WAI-ARIA properties corresponding to the datetime attribute
supported on <time> in [HTML]. The addition of this property will be considered for ARIA version 1.3.

Authors SHOULD limit text contents to a valid date- or time-related string, or apply this future datetime-
equivalent property to the element which has role time.

Examples of valid date- or time-related strings as text contents of an element with the time role:

• A valid month string: 2019-11

• A valid date string: 2019-11-18

• A valid yearless date string: 11-18

• A valid time string: 09:54:39

• A valid floating date and time string: 2019-11-18T14:54

• A valid time-zone offset string: -08:00

• A valid global date and time string: 2019-11-18T14:54Z

• A valid week string: 2019-W47

• Four or more ASCII digits, at least one of which is not U+0030 DIGIT ZERO (0): 0001

• A valid duration string: 4h 18m 3s

Characteristics:

Characteristic Value

Superclass Role: section

Related Concepts: <time> in [HTML]

Inherited States and Properties: aria-atomic

aria-busy (state)

ttiimmee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

186 of 298 27/08/2025, 04:00

Characteristic Value
aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

A type of live region containing a numerical counter which indicates an amount of elapsed time from a start
point, or the time remaining until an end point.

The text contents of the timer object indicate the current time measurement, and are updated as that amount
changes. The timer value is not necessarily machine parsable, but authors SHOULD update the text contents
at fixed intervals, except when the timer is paused or reaches an end-point.

ttiimmeerr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

187 of 298 27/08/2025, 04:00

Elements with the role timer have an implicit aria-live value of off.

Characteristics:

Characteristic Value

Superclass Role: status

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

188 of 298 27/08/2025, 04:00

A collection of commonly used function buttons or controls represented in compact visual form.

The toolbar is often a subset of functions found in a menubar, designed to reduce user effort in using these
functions. Authors MUST supply a label on each toolbar when the application contains more than one
toolbar.

Authors MAY manage focus of descendants for all instances of this role, as described in Managing Focus.

Elements with the role toolbar have an implicit aria-orientation value of horizontal.

Characteristics:

Characteristic Value

Superclass Role: group

Related Concepts: menubar

Supported States and Properties: aria-orientation

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

ttoooollbbaarr role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

189 of 298 27/08/2025, 04:00

Characteristic Value
aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

Implicit Value for Role: Default for aria-orientation is horizontal.

A contextual popup that displays a description for an element.

The tooltip typically becomes visible, after a short delay, in response to a mouse hover, or after the owning
element receives keyboard focus. The use of a WAI-ARIA tooltip is a supplement to the normal tooltip
behavior of the user agent.

NOTE

Typical tooltip delays last from one to five seconds.

Authors SHOULD ensure that elements with the role tooltip are referenced through the use of aria-
describedby before or at the time the tooltip is displayed.

Characteristics:

Characteristic Value

Superclass Role: section

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in

ttoooollttiipp role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

190 of 298 27/08/2025, 04:00

Characteristic Value
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: contents

author

Accessible Name Required: True

A widget that allows the user to select one or more items from a hierarchically organized collection.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this role, as
described in Managing Focus.

Elements with the role tree have an implicit aria-orientation value of vertical.

Characteristics:

Characteristic Value

ttrreeee role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

191 of 298 27/08/2025, 04:00

Characteristic Value

Superclass Role: select

Subclass Roles: treegrid

Required Owned Elements: group→ treeitem

treeitem

Supported States and Properties: aria-errormessage

aria-invalid

aria-multiselectable

aria-required

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-orientation

aria-owns

aria-relevant

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

192 of 298 27/08/2025, 04:00

Characteristic Value
aria-roledescription

Name From: author

Accessible Name Required: True

Implicit Value for Role: Default for aria-orientation is vertical.

A grid whose rows can be expanded and collapsed in the same manner as for a tree.

If aria-readonly is set on an element with role treegrid, user agents MUST propagate the value to all
gridcell elements owned by the treegrid and expose the value in the accessibility API. An author MAY
override the propagated value of aria-readonly for an individual gridcell element.

When the aria-readonly attribute is applied to a focusable gridcell, it indicates whether the content
contained in the gridcell is editable. The aria-readonly attribute does not represent availability of
functions for navigating or manipulating the treegrid itself.

In a treegrid that provides content editing functions, if the content of a focusable gridcell element is not
editable, authors MAY set aria-readonly to true on the gridcell element. However, if a treegrid
presents a collection of elements that do not support aria-readonly, such as a collection of link
elements, it is not necessary for the author to specify a value for aria-readonly.

To be keyboard accessible, authors SHOULD manage focus of descendants for all instances of this role, as
described in Managing Focus.

Characteristics:

Characteristic Value

Superclass Role: grid

tree

Required Owned Elements: row

rowgroup→ row

Inherited States and Properties: aria-activedescendant

aria-atomic

aria-busy (state)

aria-colcount

ttrreeeeggrriidd role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

193 of 298 27/08/2025, 04:00

Characteristic Value
aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-multiselectable

aria-orientation

aria-owns

aria-readonly

aria-relevant

aria-required

aria-roledescription

aria-rowcount

Name From: author

Accessible Name Required: True

An option item of a tree. This is an element within a tree that may be expanded or collapsed if it contains a

ttrreeeeiitteemm role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

194 of 298 27/08/2025, 04:00

sub-level group of tree item elements.

A collection of treeitem elements to be expanded and collapsed are enclosed in an element with the group
role.

Authors MUST ensure elements with role treeitem are contained in, or owned by, an element with the role
group or tree.

Characteristics:

Characteristic Value

Superclass Role: listitem

option

Required Context Role: group

tree

Supported States and Properties: aria-expanded

aria-haspopup

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-checked (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

195 of 298 27/08/2025, 04:00

Characteristic Value
aria-label

aria-labelledby

aria-level

aria-live

aria-owns

aria-posinset

aria-relevant

aria-roledescription

aria-selected (state) (required)

aria-setsize

Name From: contents

author

Accessible Name Required: True

An interactive component of a graphical user interface (GUI).

Widgets are discrete user interface objects with which the user can interact. Widget roles map to standard
features in accessibility APIs. When the user navigates an element assigned any of the non-abstract subclass
roles of widget, assistive technologies that typically intercept standard keyboard events SHOULD switch to
an application browsing mode, and pass keyboard events through to the web application. The intent is to hint
to certain assistive technologies to switch from normal browsing mode into a mode more appropriate for
interacting with a web application; some user agents have a browse navigation mode where keys, such as up
and down arrows, are used to browse the document, and this native behavior prevents the use of these keys
by a web application.

NOTE

widget is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

wwiiddggeett role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

196 of 298 27/08/2025, 04:00

Characteristic Value

Superclass Role: roletype

Subclass Roles: command

composite

gridcell

input

progressbar

row

scrollbar

separator

tab

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

197 of 298 27/08/2025, 04:00

Characteristic Value
aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: n/a

A browser or application window.

Elements with this role have a window-like behavior in a graphical user interface (GUI) context, regardless
of whether they are implemented as a native window in the operating system, or merely as a section of the
document styled to look like a window.

NOTE

In the description of this role, the term "application" does not refer to the application role, which
specifies specific assistive technology behaviors.

NOTE

window is an abstract role used for the ontology. Authors should not use this role in content.

Characteristics:

Characteristic Value

Is Abstract: True

Superclass Role: roletype

Subclass Roles: dialog

Supported States and Properties: aria-modal

Inherited States and Properties: aria-atomic

aria-busy (state)

aria-controls

aria-current (state)

aria-describedby

wwiinnddooww role

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

198 of 298 27/08/2025, 04:00

Characteristic Value
aria-details

aria-disabled (state) (deprecated on this role in
ARIA 1.2)

aria-dropeffect

aria-errormessage (deprecated on this role in
ARIA 1.2)

aria-flowto

aria-grabbed (state)

aria-haspopup (deprecated on this role in ARIA
1.2)

aria-hidden (state)

aria-invalid (state) (deprecated on this role in
ARIA 1.2)

aria-keyshortcuts

aria-label

aria-labelledby

aria-live

aria-owns

aria-relevant

aria-roledescription

Name From: author

The terms "states" and "properties" refer to similar features. Both provide specific information about an
object, and both form part of the definition of the nature of roles. In this document, states and properties are
both treated as aria-prefixed markup attributes. However, they are maintained conceptually distinct to clarify
subtle differences in their meaning. One major difference is that the values of properties (such as aria-

6. Supported States and Properties

6.1 Clarification of States versus Properties

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

199 of 298 27/08/2025, 04:00

labelledby) are often less likely to change throughout the application life-cycle than the values of states
(such as aria-checked) which may change frequently due to user interaction. Note that the frequency of
change difference is not a rule; a few properties, such as aria-valuetext are expected to change often.
Because the distinction between states and properties is of little consequence to most web content authors,
this specification refers to both "states" and "properties" simply as "attributes" whenever possible. See the
definitions of state and property for more information.

States and properties have the characteristics described in the following sections.

Advisory information about features from this or other languages that correspond to this state or property.
While the correspondence may not be exact, it is useful to help understand the intent of the state or property.

Advisory information about roles that use this state or property. This information is provided to help
understand the appropriate usage of the state or property. Use of a given state or property is not defined when
used on roles other than those listed.

Advisory information about roles that inherit the state or property from an ancestor role.

Value type of the state or property. The value may be one of the following types:

true/false

6.2 Characteristics of States and Properties

6.2.1 Related Concepts

6.2.2 Used in Roles

6.2.3 Inherits into Roles

6.2.4 Value

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

200 of 298 27/08/2025, 04:00

Value representing either true or false. The default value for this value type is false unless
otherwise specified.

tristate
Value representing true, false, mixed, or undefined values. The default value for this value type is
undefined unless otherwise specified.

true/false/undefined
Value representing true, false, or undefined (not applicable). The default value for this value type
is undefined unless otherwise specified. For example, an element with aria-expanded set to false
is not currently expanded; an element with aria-expanded set to undefined is not expandable.

ID reference
Reference to the ID of another element in the same document

ID reference list
A list of one or more ID references.

integer
A numerical value without a fractional component.

number
Any real numerical value.

string
Unconstrained value type.

token
One of a limited set of allowed values. The default value is defined in each attribute's Values table, as
specified in the Attribute Values section.

token list
A list of one or more tokens.

These are generic types for states and properties, but do not define specific representation. See State and
Property Attribute Processing for details on how these values are expressed and handled in host languages.

When the ARIA attribute definition includes a table listing the attribute's allowed values, that attribute is a
multi-value nullable attribute. Each value in the table is a keyword for the attribute, mapping to a state of the
same name.

6.3 ARIA Attributes

6.3.1 Multi-value Attribute Values

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

201 of 298 27/08/2025, 04:00

All ARIA attributes reflect in IDL as nullable DOMString attributes. This includes the boolean-like true/false
type, and all other ARIA attributes.

Default values from the ARIA values tables MUST NOT reflect to IDL as the missing value default or the
invalid value default for the attribute. On getting, a missing ARIA attribute will return null. ARIA attributes
are not validated on get. If an ARIA value is invalid, on getting, it will return its set value as a literal string,
and will not return an invalid value default.

Unlike IDL reflection, operating system accessibility API mappings of ARIA attributes can have defaults.
Any default values from the ARIA values tables are exposed to the operating system accessibility API as
described in 5.2.3 Supported States and Properties, and in Core Accessibility API Mappings 1.1.

As noted in A. Mapping WAI-ARIA Value types to languages, attributes are included in host languages, and
the syntax for representation of WAI-ARIA types is governed by the host language.

The following algorithm should be used for ARIA nullable DOMString attributes in HTML:

On getting, if the corresponding content attribute is not present, then the IDL attribute must return null,
otherwise, the IDL attribute must get the value in a transparent, case-preserving manner. On setting, if the
new value is null, the content attribute must be removed, and otherwise, the content attribute must be set to
the specified new value in a transparent, case-preserving manner.

NOTE

Note: As of ARIA 1.2, all ARIA attributes exposed via IDL are defined as nullable DOMStrings. This
matches the current implementation of all major rendering engines. This specification change should
result in no implementation changes; it will merely represent the current reality of web engines. However,
in a future draft, the ARIA Working Group intends to change several ARIA attributes to non-nullable
DOMStrings, and seek implementations. The proposed change will bring ARIA into alignment with the
HTML’s usage of enumerated attributes.

6.3.2 IDL reflection of ARIA attributes

6.3.3 Operating System Accessibility API mapping of multi-value ARIA attributes

6.3.4 ARIA nullable DOMString Attributes

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

202 of 298 27/08/2025, 04:00

https://webidl.spec.whatwg.org/#dfn-nullable-type
https://webidl.spec.whatwg.org/#dfn-nullable-type
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#missing-value-default
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#missing-value-default
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#invalid-value-default
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#invalid-value-default
https://www.w3.org/TR/core-aam-1.1/
https://www.w3.org/TR/core-aam-1.1/
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#enumerated-attribute
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#enumerated-attribute

This section is non-normative.

6.3.4.1 Example Attribute Usage

EXAMPLE 14

// HTML hidden="" example (not aria-hidden="true")
// Actual boolean type; defaults to false.

// Note: Actual boolean assignment and return value.
el.hidden = true;
el.hidden; // true

// Removal of content attribute results in missing value default: boolean false.
el.removeAttribute("hidden");
el.hidden; // false

EXAMPLE 15

// aria-busy example
// true/false ~ boolean-like nullable string; returns null unless set

el.ariaBusy; // null

// Note: String assignment and return value.
el.ariaBusy = "true";
el.ariaBusy; // "true"

// Removal of content attribute results in missing value default: string "false".
el.removeAttribute("aria-busy");
el.ariaBusy; // null

// Assignment of invalid "busy" value. Not validated on set or get and the literal string value "busy" is return
el.setAttribute("aria-busy", "busy");
el.ariaBusy; // "busy"

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

203 of 298 27/08/2025, 04:00

The HTML specification states that other specifications can define translatable attributes. In order to be
understandable by assistive technology users, the values of the following states and properties are translatable
attributes and should be translated when a page is localized:

• aria-label

• aria-placeholder

• aria-roledescription

• aria-valuetext

Some states and properties are applicable to all host language elements regardless of whether a role is
applied. The following global states and properties are supported by all roles and by all base markup
elements unless otherwise prohibited. If a role prohibits use of any global states or properties, those states or
properties are listed as prohibited in the characteristics table included in the section that defines the role.

EXAMPLE 16

// aria-pressed example
// Tristate ~ true/false/mixed/undefined string; null if unspecified

// no value has been defined
button.ariaPressed; // null

// A value of "true", "false", or "mixed" for aria-pressed on a button denotes a toggle button.
button.setAttribute("aria-pressed", "true"); // Content attribute assignment.
button.ariaPressed; // "true"
button.ariaPressed = "false"; // DOM property assignment.
button.ariaPressed; // "false"

// Assignment of invalid "foo" value. Not validated on set or get and the literal string value "foo" is returned
button.ariaPressed = "foo";
button.ariaPressed; // "foo" (Note: button is no longer a toggle button.)

// Removal of content attribute results in a null value
button.removeAttribute("aria-pressed");
button.ariaPressed; // null

6.4 Translatable States and Properties

6.5 Global States and Properties

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

204 of 298 27/08/2025, 04:00

https://html.spec.whatwg.org/multipage/dom.html#translatable-attributes
https://html.spec.whatwg.org/multipage/dom.html#translatable-attributes
https://html.spec.whatwg.org/multipage/dom.html#translatable-attributes
https://html.spec.whatwg.org/multipage/dom.html#translatable-attributes
https://html.spec.whatwg.org/multipage/dom.html#translatable-attributes
https://html.spec.whatwg.org/multipage/dom.html#translatable-attributes

• aria-atomic

• aria-busy (state)

• aria-controls

• aria-current (state)

• aria-describedby

• aria-details

• aria-disabled (state) (Global use deprecated in ARIA 1.2)

• aria-dropeffect

• aria-errormessage (Global use deprecated in ARIA 1.2)

• aria-flowto

• aria-grabbed (state)

• aria-haspopup (Global use deprecated in ARIA 1.2)

• aria-hidden (state)

• aria-invalid (state) (Global use deprecated in ARIA 1.2)

• aria-keyshortcuts

• aria-label (Except where prohibited)

• aria-labelledby (Except where prohibited)

• aria-live

• aria-owns

• aria-relevant

• aria-roledescription

States and properties are categorized as follows:

1. Widget Attributes

2. Live Region Attributes

3. Drag-and-Drop Attributes

4. Relationship Attributes

6.6 Taxonomy of WAI-ARIA States and Properties

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

205 of 298 27/08/2025, 04:00

This section contains attributes specific to common user interface elements found on GUI systems or in rich
internet applications which receive user input and process user actions. These attributes are used to support
the widget roles.

• aria-autocomplete

• aria-checked

• aria-disabled

• aria-errormessage

• aria-expanded

• aria-haspopup

• aria-hidden

• aria-invalid

• aria-label

• aria-level

• aria-modal

• aria-multiline

• aria-multiselectable

• aria-orientation

• aria-placeholder

• aria-pressed

• aria-readonly

• aria-required

• aria-selected

• aria-sort

• aria-valuemax

• aria-valuemin

• aria-valuenow

6.6.1 Widget Attributes

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

206 of 298 27/08/2025, 04:00

• aria-valuetext

Widget attributes might be mapped by a user agent to platform accessibility API state, for access by assistive
technologies, or they might be accessed directly from the DOM. User agents MUST provide a way for
assistive technologies to be notified when states change, either through DOM attribute change events or
platform accessibility API events.

This section contains attributes specific to live regions in rich internet applications. These attributes may be
applied to any element. The purpose of these attributes is to indicate that content changes may occur without
the element having focus, and to provide assistive technologies with information on how to process those
content updates. Some roles specify a default value for the aria-live attribute specific to that role. An
example of a live region is a ticker section that lists updating stock quotes.

• aria-atomic

• aria-busy

• aria-live

• aria-relevant

This section lists attributes which indicate information about drag-and-drop interface elements, such as
draggable elements and their drop targets. Drop target information will be rendered visually by the author and
provided to assistive technologies through an alternate modality.

• aria-dropeffect

• aria-grabbed

This section lists attributes that indicate relationships or associations between elements which cannot be
readily determined from the document structure.

6.6.2 Live Region Attributes

6.6.3 Drag-and-Drop Attributes

6.6.4 Relationship Attributes

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

207 of 298 27/08/2025, 04:00

• aria-activedescendant

• aria-colcount

• aria-colindex

• aria-colspan

• aria-controls

• aria-describedby

• aria-details

• aria-errormessage

• aria-flowto

• aria-labelledby

• aria-owns

• aria-posinset

• aria-rowcount

• aria-rowindex

• aria-rowspan

• aria-setsize

Below is an alphabetical list of WAI-ARIA states and properties to be used by rich internet application
authors. A detailed definition of each WAI-ARIA state and property follows this compact list.

aria-activedescendant
Identifies the currently active element when DOM focus is on a composite widget, combobox,
textbox, group, or application.

aria-atomic
Indicates whether assistive technologies will present all, or only parts of, the changed region based on
the change notifications defined by the aria-relevant attribute.

aria-autocomplete
Indicates whether inputting text could trigger display of one or more predictions of the user's intended
value for a combobox, searchbox, or textbox and specifies how predictions would be presented if
they were made.

aria-busy

6.7 Definitions of States and Properties (all aria-* attributes)

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

208 of 298 27/08/2025, 04:00

Indicates an element is being modified and that assistive technologies MAY want to wait until the
modifications are complete before exposing them to the user.

aria-checked
Indicates the current "checked" state of checkboxes, radio buttons, and other widgets. See related aria-
pressed and aria-selected.

aria-colcount
Defines the total number of columns in a table, grid, or treegrid. See related aria-colindex.

aria-colindex
Defines an element's column index or position with respect to the total number of columns within a
table, grid, or treegrid. See related aria-colcount and aria-colspan.

aria-colspan
Defines the number of columns spanned by a cell or gridcell within a table, grid, or treegrid. See
related aria-colindex and aria-rowspan.

aria-controls
Identifies the element (or elements) whose contents or presence are controlled by the current element.
See related aria-owns.

aria-current
Indicates the element that represents the current item within a container or set of related elements.

aria-describedby
Identifies the element (or elements) that describes the object. See related aria-labelledby.

aria-details
Identifies the element that provides a detailed, extended description for the object. See related aria-
describedby.

aria-disabled
Indicates that the element is perceivable but disabled, so it is not editable or otherwise operable. See
related aria-hidden and aria-readonly.

aria-dropeffect
[Deprecated in ARIA 1.1] Indicates what functions can be performed when a dragged object is released
on the drop target.

aria-errormessage
Identifies the element that provides an error message for an object. See related aria-invalid and
aria-describedby.

aria-expanded
Indicates whether a grouping element owned or controlled by this element is expanded or collapsed.

aria-flowto
Identifies the next element (or elements) in an alternate reading order of content which, at the user's
discretion, allows assistive technology to override the general default of reading in document source
order.

aria-grabbed

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

209 of 298 27/08/2025, 04:00

[Deprecated in ARIA 1.1] Indicates an element's "grabbed" state in a drag-and-drop operation.

aria-haspopup
Indicates the availability and type of interactive popup element, such as menu or dialog, that can be
triggered by an element.

aria-hidden
Indicates whether the element is exposed to an accessibility API. See related aria-disabled.

aria-invalid
Indicates the entered value does not conform to the format expected by the application. See related
aria-errormessage.

aria-keyshortcuts
Indicates keyboard shortcuts that an author has implemented to activate or give focus to an element.

aria-label
Defines a string value that labels the current element. See related aria-labelledby.

aria-labelledby
Identifies the element (or elements) that labels the current element. See related aria-describedby.

aria-level
Defines the hierarchical level of an element within a structure.

aria-live
Indicates that an element will be updated, and describes the types of updates the user agents, assistive
technologies, and user can expect from the live region.

aria-modal
Indicates whether an element is modal when displayed.

aria-multiline
Indicates whether a text box accepts multiple lines of input or only a single line.

aria-multiselectable
Indicates that the user may select more than one item from the current selectable descendants.

aria-orientation
Indicates whether the element's orientation is horizontal, vertical, or unknown/ambiguous.

aria-owns
Identifies an element (or elements) in order to define a visual, functional, or contextual parent/child
relationship between DOM elements where the DOM hierarchy cannot be used to represent the
relationship. See related aria-controls.

aria-placeholder
Defines a short hint (a word or short phrase) intended to aid the user with data entry when the control
has no value. A hint could be a sample value or a brief description of the expected format.

aria-posinset
Defines an element's number or position in the current set of listitems or treeitems. Not required if all
elements in the set are present in the DOM. See related aria-setsize.

aria-pressed

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

210 of 298 27/08/2025, 04:00

Indicates the current "pressed" state of toggle buttons. See related aria-checked and aria-
selected.

aria-readonly
Indicates that the element is not editable, but is otherwise operable. See related aria-disabled.

aria-relevant
Indicates what notifications the user agent will trigger when the accessibility tree within a live region is
modified. See related aria-atomic.

aria-required
Indicates that user input is required on the element before a form may be submitted.

aria-roledescription
Defines a human-readable, author-localized description for the role of an element.

aria-rowcount
Defines the total number of rows in a table, grid, or treegrid. See related aria-rowindex.

aria-rowindex
Defines an element's row index or position with respect to the total number of rows within a table,
grid, or treegrid. See related aria-rowcount and aria-rowspan.

aria-rowspan
Defines the number of rows spanned by a cell or gridcell within a table, grid, or treegrid. See
related aria-rowindex and aria-colspan.

aria-selected
Indicates the current "selected" state of various widgets. See related aria-checked and aria-
pressed.

aria-setsize
Defines the number of items in the current set of listitems or treeitems. Not required if all elements in
the set are present in the DOM. See related aria-posinset.

aria-sort
Indicates if items in a table or grid are sorted in ascending or descending order.

aria-valuemax
Defines the maximum allowed value for a range widget.

aria-valuemin
Defines the minimum allowed value for a range widget.

aria-valuenow
Defines the current value for a range widget. See related aria-valuetext.

aria-valuetext
Defines the human readable text alternative of aria-valuenow for a range widget.

aarriiaa--aaccttiivveeddeesscceennddaanntt property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

211 of 298 27/08/2025, 04:00

Identifies the currently active element when DOM focus is on a composite widget, combobox, textbox,
group, or application.

The aria-activedescendant property provides an alternative method of managing focus for interactive
elements that may contain multiple focusable descendants, such as menus, grids, and toolbars. Instead of
moving DOM focus among owned elements, authors MAY set DOM focus on a container element that
supports aria-activedescendant and then use aria-activedescendant to refer to the element that is
active.

Authors MUST ensure that one of the following two sets of conditions is met when setting the value of
aria-activedescendant on an element with DOM focus:

1. The value of aria-activedescendant refers to an owned element. An owned element is either a
descendant of the element with DOM focus or a logical descendant as indicated by the aria-owns
attribute.

2. The element with DOM focus is a combobox, textbox or searchbox with aria-controls referring
to an element that supports aria-activedescendant, and the value of aria-activedescendant
refers to an owned element of the controlled element. For example, in a combobox, focus may remain
on the combobox while the value of aria-activedescendant on the combobox element refers to a
descendant of a popup listbox that is controlled by the combobox.

Authors SHOULD also ensure that the currently active descendant is visible and in view (or scrolls into
view) when focused.

Characteristics:

Characteristic Value

Related Concepts: SVG [SVG2] and DOM [DOM] active

Used in Roles: application

combobox

composite

group

textbox

Inherits into Roles: grid

listbox

menu

menubar

radiogroup

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

212 of 298 27/08/2025, 04:00

https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/

Characteristic Value
row

searchbox

select

spinbutton

tablist

toolbar

tree

treegrid

Value: ID reference

Indicates whether assistive technologies will present all, or only parts of, the changed region based on the
change notifications defined by the aria-relevant attribute.

Both accessibility APIs and the Document Object Model [DOM] provide events to allow the assistive
technologies to determine changed areas of the document.

When the content of a live region changes, user agents SHOULD examine the changed element and traverse
the ancestors to find the first element with aria-atomic set, and apply the appropriate behavior for the
cases below.

1. If none of the ancestors have explicitly set aria-atomic, the default is that aria-atomic is false,
and assistive technologies will only present the changed node to the user.

2. If aria-atomic is explicitly set to false, assistive technologies will stop searching up the ancestor
chain and present only the changed node to the user.

3. If aria-atomic is explicitly set to true, assistive technologies will present the entire contents of the
element, including the author-defined live region label if one exists.

When aria-atomic is true, assistive technologies MAY choose to combine several changes and present
the entire changed region at once.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

aarriiaa--aattoommiicc property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

213 of 298 27/08/2025, 04:00

https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/

Values:

Value Description

false (default) Assistive technologies will present only the changed
node or nodes.

true Assistive technologies will present the entire changed
region as a whole, including the author-defined label if
one exists.

Indicates whether inputting text could trigger display of one or more predictions of the user's intended value
for a combobox, searchbox, or textbox and specifies how predictions would be presented if they were
made.

The aria-autocomplete property describes the type of interaction model a textbox, searchbox, or
combobox employs when dynamically helping users complete text input. It distinguishes between two
models: the inline model (aria-autocomplete="inline") that presents a value completion prediction
inside the text input and the list model (aria-autocomplete="list") that presents a collection of
possible values in a separate element that pops up adjacent to the text input. It is possible for an input to offer
both models at the same time (aria-autocomplete="both").

The aria-autocomplete property is limited to describing predictive behaviors of an input element.
Authors SHOULD either omit specifying a value for aria-autocomplete or set aria-autocomplete to
none if an input element provides one or more input proposals where none of the proposals are dependent on
the specific input provided by the user. For instance, a combobox where the value of aria-autocomplete
would be none is a search field that displays suggested values by listing the 5 most recently used search
terms without any filtering of the list based on the user's input. Elements with a role that supports aria-
autocomplete have a default value for aria-autocomplete of none.

When an inline suggestion is made as a user types in an input, suggested text for completing the value of the
field dynamically appears in the field after the input cursor, and the suggested value is accepted as the value
of the input if the user performs an action that causes focus to leave the field. When an element has aria-
autocomplete set to inline or both, authors SHOULD ensure that the automatically suggested portion of
the text is presented as selected text. This enables assistive technologies to distinguish between a user's input
and the automatic suggestion and, in the event that the suggestion is not the desired value, enables the user to
easily delete the suggestion or replace it by continuing to type.

If an element has aria-autocomplete set to list or both, authors MUST ensure both of the following
conditions are met:

1. The element has a value specified for aria-controls that refers to the element that contains the

aarriiaa--aauuttooccoommpplleettee property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

214 of 298 27/08/2025, 04:00

collection of suggested values.

2. The element has a value for aria-haspopup that matches the role of the element that contains the
collection of suggested values.

Some implementations of the list model require the user to perform an action, such as moving focus to the
suggestion with the Down Arrow or clicking on the suggestion, in order to choose the suggestion. In such
implementations, authors MAY manage focus by either using aria-activedescendant if the collection
container supports it or by moving DOM focus to the suggestion. However, other implementations of the list
model automatically highlight one suggestion as the selected value that will be accepted when the field loses
focus, e.g., when the user presses the Tab key or clicks on a different field. If an element has aria-
autocomplete set to list or both, and if a suggestion is automatically selected as the user provides input,
authors MUST ensure all the following conditions are met:

1. The collection of suggestions is presented in an element with a role that supports aria-
activedescendant.

2. The value of aria-activedescendant set on the input field is dynamically adjusted to refer to the
element containing the selected suggestion as described in the definition of aria-activedescendant.

3. DOM focus remains on the text input while the suggestions are displayed.

The aria-autocomplete property is not intended to indicate the presence of a completion suggestion, and
authors SHOULD NOT dynamically change its value in order to communicate the presence of a suggestion.
When an element has aria-autocomplete set to list or both, authors SHOULD use the aria-
expanded state to communicate whether the element that presents the suggestion collection is displayed.

Characteristics:

Characteristic Value

Used in Roles: combobox

textbox

Inherits into Roles: searchbox

Value: token

Values:

Value Description

inline When a user is providing input, text suggesting one way
to complete the provided input may be dynamically
inserted after the caret.

list When a user is providing input, an element containing a
collection of values that could complete the provided

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

215 of 298 27/08/2025, 04:00

Value Description
input may be displayed.

both When a user is providing input, an element containing a
collection of values that could complete the provided
input may be displayed. If displayed, one value in the
collection is automatically selected, and the text needed
to complete the automatically selected value appears
after the caret in the input.

none (default) When a user is providing input, an automatic suggestion
that attempts to predict how the user intends to
complete the input is not displayed.

Indicates an element is being modified and that assistive technologies MAY want to wait until the
modifications are complete before exposing them to the user.

The default value of aria-busy is false for all elements. When aria-busy is true for an element,
assistive technologies MAY ignore changes to content owned by that element and then process all changes
made during the busy period as a single, atomic update when aria-busy becomes false.

If it is necessary to make multiple additions, modifications, or removals within a container element that is
already either partially or fully rendered, authors MAY set aria-busy to true on the container element
before the first change, and then set it to false when the last change is complete. For example, if multiple
changes to a live region should be spoken as a single unit of speech, authors MAY set aria-busy to true
while the changes are being made and then set it to false when the changes are complete and ready to be
spoken.

If an element with role feed is marked busy, assistive technologies MAY defer rendering changes that occur
inside the feed with the exception of user-initiated changes that occur inside the article that the user is
reading during the busy period.

If changes to a rendered widget would create a state where the widget is missing required owned elements
during script execution, authors MUST set aria-busy to true on the widget during the update process.
For example, if a rendered tree grid required a set of simultaneous updates to multiple discontiguous
branches, an alternative to replacing the complete tree element with a single update would be to mark the tree
busy while each of the branches are modified.

Characteristics:

Characteristic Value

aarriiaa--bbuussyy state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

216 of 298 27/08/2025, 04:00

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false

Values:

Value Description

false (default): There are no expected updates for the element.

true The element is being updated.

Indicates the current "checked" state of checkboxes, radio buttons, and other widgets. See related aria-
pressed and aria-selected.

The aria-checked attribute indicates whether the element is checked (true), unchecked (false), or
represents a group of other elements that have a mixture of checked and unchecked values (mixed). Most
inputs only support values of true and false, but the mixed value is supported by certain tri-state inputs
such as a checkbox or menuitemcheckbox.

The mixed value is not supported on radio, menuitemradio, switch or any element that inherits from
these, and user agents MUST treat a mixed value as equivalent to false for those roles.

Examples using the mixed value of tri-state inputs are covered in the WAI-ARIA Authoring Practices.

Characteristics:

Characteristic Value

Used in Roles: checkbox

menuitemcheckbox

option

radio

switch

Inherits into Roles: menuitemradio

switch

treeitem

Value: tristate

aarriiaa--cchheecckkeedd state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

217 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/

Values:

Value Description

false The element supports being checked but is not currently
checked.

mixed Indicates a mixed mode value for a tri-state checkbox or
menuitemcheckbox.

true The element is checked.

undefined (default) The element does not support being checked.

Defines the total number of columns in a table, grid, or treegrid. See related aria-colindex.

If all of the columns are present in the DOM, it is not necessary to set this attribute as the user agent can
automatically calculate the total number of columns. However, if only a portion of the columns is present in
the DOM at a given moment, this attribute is needed to provide an explicit indication of the number of
columns in the full table.

Authors MUST set the value of aria-colcount to an integer equal to the number of columns in the full
table. If the total number of columns is unknown, authors MUST set the value of aria-colcount to -1 to
indicate that the value should not be calculated by the user agent.

The following example shows a grid with 16 columns, of which columns 2, 3, 4, and 9 are displayed to the
user.

aarriiaa--ccoollccoouunntt property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

218 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Used in Roles: table

Inherits into Roles: grid

treegrid

Value: integer

Defines an element's column index or position with respect to the total number of columns within a table,
grid, or treegrid. See related aria-colcount and aria-colspan.

If all of the columns are present in the DOM, it is not necessary to set this attribute as the user agent can
automatically calculate the column index of each cell or gridcell. However, if only a portion of the
columns is present in the DOM at a given moment, this attribute is needed to provide an explicit indication of
the column of each cell or gridcell with respect to the full table.

EXAMPLE 17

<ddiivv role="grid" aria-colcount="16">
<ddiivv role="rowgroup">

<ddiivv role="row">
<ssppaann role="columnheader" aria-colindex="2">First Name</ssppaann>
<ssppaann role="columnheader" aria-colindex="3">Last Name</ssppaann>
<ssppaann role="columnheader" aria-colindex="4">Company</ssppaann>
<ssppaann role="columnheader" aria-colindex="9">Phone</ssppaann>

</ddiivv>
</ddiivv>
<ddiivv role="rowgroup">

<ddiivv role="row">
<ssppaann role="gridcell" aria-colindex="2">Fred</ssppaann>
<ssppaann role="gridcell" aria-colindex="3">Jackson</ssppaann>
<ssppaann role="gridcell" aria-colindex="4">Acme, Inc.</ssppaann>
<ssppaann role="gridcell" aria-colindex="9">555-1234</ssppaann>

</ddiivv>
<ddiivv role="row">

<ssppaann role="gridcell" aria-colindex="2">Sara</ssppaann>
<ssppaann role="gridcell" aria-colindex="3">James</ssppaann>
<ssppaann role="gridcell" aria-colindex="4">Acme, Inc.</ssppaann>
<ssppaann role="gridcell" aria-colindex="9">555-1235</ssppaann>

</ddiivv>
 …

</ddiivv>
</ddiivv>

aarriiaa--ccoolliinnddeexx property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

219 of 298 27/08/2025, 04:00

Authors MUST set the value for aria-colindex to an integer greater than or equal to 1, greater than the
aria-colindex value of any previous elements within the same row, and less than or equal to the number
of columns in the full table. For a cell or gridcell which spans multiple columns, authors MUST set the value
of aria-colindex to the start of the span.

If the set of columns which is present in the DOM is contiguous, and if there are no cells which span more
than one row or column in that set, then authors MAY place aria-colindex on each row, setting the value
to the index of the first column of the set. Otherwise, authors SHOULD place aria-colindex on all of the
children or owned elements of each row.

The following example shows a grid with 16 columns, of which columns 2 through 5 are displayed to the
user. Because the set of columns is contiguous, aria-colindex can be placed on each row.

The following example shows a grid with 16 columns, of which columns 2 through 5 are displayed to the
user. While the set of columns is contiguous, some of the cells span multiple rows. As a result, aria-
colindex needs to be placed on all of the owned elements of each row.

EXAMPLE 18

<ddiivv role="grid" aria-colcount="16">
<ddiivv role="rowgroup">

<ddiivv role="row" aria-colindex="2">
<ssppaann role="columnheader">First Name</ssppaann>
<ssppaann role="columnheader">Last Name</ssppaann>
<ssppaann role="columnheader">Company</ssppaann>
<ssppaann role="columnheader">Address</ssppaann>

</ddiivv>
</ddiivv>
<ddiivv role="rowgroup">

<ddiivv role="row" aria-colindex="2">
<ssppaann role="gridcell">Fred</ssppaann>
<ssppaann role="gridcell">Jackson</ssppaann>
<ssppaann role="gridcell">Acme, Inc.</ssppaann>
<ssppaann role="gridcell">123 Broad St.</ssppaann>

</ddiivv>
<ddiivv role="row" aria-colindex="2">

<ssppaann role="gridcell">Sara</ssppaann>
<ssppaann role="gridcell">James</ssppaann>
<ssppaann role="gridcell">Acme, Inc.</ssppaann>
<ssppaann role="gridcell">123 Broad St.</ssppaann>

</ddiivv>
 …

</ddiivv>
</ddiivv>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

220 of 298 27/08/2025, 04:00

The following example shows a grid with 16 columns, of which columns 2, 3, 4, and 9 are displayed to the
user. Because the set of columns is non-contiguous, aria-colindex needs to be placed on all of the owned
elements of each row.

EXAMPLE 19

<ddiivv role="grid" aria-colcount="16">
<ddiivv role="rowgroup">

<ddiivv role="row">
<ssppaann role="columnheader" aria-colindex="2">First Name</ssppaann>
<ssppaann role="columnheader" aria-colindex="3">Last Name</ssppaann>
<ssppaann role="columnheader" aria-colindex="4">Company</ssppaann>
<ssppaann role="columnheader" aria-colindex="5">Address</ssppaann>

</ddiivv>
</ddiivv>
<ddiivv role="rowgroup">

<ddiivv role="row">
<ssppaann role="gridcell" aria-colindex="2">Fred</ssppaann>
<ssppaann role="gridcell" aria-colindex="3">Jackson</ssppaann>
<ssppaann role="gridcell" aria-colindex="4" aria-rowspan="2">Acme, Inc.</ssppaann>
<ssppaann role="gridcell" aria-colindex="5" aria-rowspan="2">123 Broad St.</ssppaann>

</ddiivv>
<ddiivv role="row">

<ssppaann role="gridcell" aria-colindex="2">Sara</ssppaann>
<ssppaann role="gridcell" aria-colindex="3">James</ssppaann>

</ddiivv>
 …

</ddiivv>
</ddiivv>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

221 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Used in Roles: cell

row

Inherits into Roles: columnheader

gridcell

rowheader

Value: integer

Defines the number of columns spanned by a cell or gridcell within a table, grid, or treegrid. See
related aria-colindex and aria-rowspan.

This attribute is intended for cells and gridcells which are not contained in a native table. When defining the

EXAMPLE 20

<ddiivv role="grid" aria-colcount="16">
<ddiivv role="rowgroup">

<ddiivv role="row">
<ssppaann role="columnheader" aria-colindex="2">First Name</ssppaann>
<ssppaann role="columnheader" aria-colindex="3">Last Name</ssppaann>
<ssppaann role="columnheader" aria-colindex="4">Company</ssppaann>
<ssppaann role="columnheader" aria-colindex="9">Phone</ssppaann>

</ddiivv>
</ddiivv>
<ddiivv role="rowgroup">

<ddiivv role="row">
<ssppaann role="gridcell" aria-colindex="2">Fred</ssppaann>
<ssppaann role="gridcell" aria-colindex="3">Jackson</ssppaann>
<ssppaann role="gridcell" aria-colindex="4">Acme, Inc.</ssppaann>
<ssppaann role="gridcell" aria-colindex="9">555-1234</ssppaann>

</ddiivv>
<ddiivv role="row">

<ssppaann role="gridcell" aria-colindex="2">Sara</ssppaann>
<ssppaann role="gridcell" aria-colindex="3">James</ssppaann>
<ssppaann role="gridcell" aria-colindex="4">Acme, Inc.</ssppaann>
<ssppaann role="gridcell" aria-colindex="9">555-1235</ssppaann>

</ddiivv>
 …

</ddiivv>
</ddiivv>

aarriiaa--ccoollssppaann property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

222 of 298 27/08/2025, 04:00

column span of cells or gridcells in a native table, authors SHOULD use the host language's attribute instead
of aria-colspan. If aria-colspan is used on an element for which the host language provides an
equivalent attribute, user agents MUST ignore the value of aria-colspan and instead expose the value of
the host language's attribute to assistive technologies.

Authors MUST set the value of aria-colspan to an integer greater than or equal to 1 and less than the
value which would cause the cell or gridcell to overlap the next cell or gridcell in the same row.

Characteristics:

Characteristic Value

Used in Roles: cell

Inherits into Roles: columnheader

rowheader

Value: integer

Identifies the element (or elements) whose contents or presence are controlled by the current element. See
related aria-owns.

For example:

• A table of contents tree view may control the content of a neighboring document pane.

• A group of checkboxes may control what commodity prices are tracked live in a table or graph.

• A tab controls the display of its associated tab panel.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

Indicates the element that represents the current item within a container or set of related elements.

The aria-current attribute is a token type. Any value not included in the list of allowed values SHOULD
be treated by assistive technologies as if the value true had been provided. If the attribute is not present or

aarriiaa--ccoonnttrroollss property

aarriiaa--ccuurrrreenntt state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

223 of 298 27/08/2025, 04:00

its value is an empty string or undefined, the default value of false applies and the aria-current state
MUST NOT be exposed by user agents or assistive technologies.

The aria-current attribute is used when an element within a set of related elements is visually styled to
indicate it is the current item in the set. For example:

• A page token used to indicate a link within a set of pagination links, where the link is visually styled to
represent the currently-displayed page.

• A step token used to indicate a link within a step indicator for a step-based process, where the link is
visually styled to represent the current step.

• A location token used to indicate the image that is visually highlighted as the current component of a
flow chart.

• A date token used to indicate the current date within a calendar.

• A time token used to indicate the current time within a timetable.

Authors SHOULD only mark one element in a set of elements as current with aria-current.

Authors SHOULD NOT use the aria-current attribute as a substitute for aria-selected in widgets
where aria-selected has the same meaning. For example, in a tablist, aria-selected is used on a
tab to indicate the currently-displayed tabpanel.

NOTE

In some use cases for widgets that support aria-selected, current and selected can have different
meanings and can both be used within the same set of elements. For example, aria-current="page"
can be used in a navigation tree to indicate which page is currently displayed, while aria-
selected="true" indicates which page will be displayed if the user activates the treeitem.
Furthermore, the same tree may support operating on one or more selected pages (treeitems) by way of a
context menu containing options such as "delete" and "move."

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: token

Values:

Value Description

page Represents the current page within a set of pages.

step Represents the current step within a process.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

224 of 298 27/08/2025, 04:00

Value Description

location Represents the current location within an environment
or context.

date Represents the current date within a collection of dates.

time Represents the current time within a set of times.

true Represents the current item within a set.

false (default) Does not represent the current item within a set.

Identifies the element (or elements) that describes the object. See related aria-labelledby.

The aria-labelledby attribute is similar to the aria-describedby in that both reference other elements
to calculate a text alternative, but a label should be concise, where a description is intended to provide more
verbose information.

The element or elements referenced by the aria-describedby comprise the entire description. Include ID
references to multiple elements if necessary, or enclose a set of elements (e.g., paragraphs) with the element
referenced by the ID.

Characteristics:

Characteristic Value

Related Concepts: <label> in [HTML]

online help

HTML table cell headers

Used in Roles: All elements of the base markup

Value: ID reference list

Identifies the element that provides a detailed, extended description for the object. See related aria-
describedby.

The aria-details attribute references a single element that provides more detailed information than would
normally be provided by aria-describedby. It enables assistive technologies to make users aware of the
availability of an extended description as well as navigate to it. Authors SHOULD ensure the element
referenced by aria-details is visible to all users.

aarriiaa--ddeessccrriibbeeddbbyy property

aarriiaa--ddeettaaiillss property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

225 of 298 27/08/2025, 04:00

Unlike elements referenced by aria-describedby, the element referenced by aria-details is not used
in either the Accessible Name Computation or the Accessible Description Computation as defined in the
Accessible Name and Description specification. Thus, the content of an element referenced by aria-
details is not flattened to a string when presented to assistive technology users. This makes aria-
details particularly useful when converting the information to a string would cause a loss of information or
make the extended description more difficult to understand.

In some user agents, multiple reference relationships for descriptive information are not supported by the
accessibility API. In such cases, if both aria-describedby and aria-details are provided on an
element, aria-details takes precedence.

A common use for aria-details is in digital publishing where an extended description needs to be
conveyed in a book that requires structural markup or the embedding of other technology to provide
illustrative content. The following example demonstrates this scenario.

Alternatively, aria-details may refer to a link to a web page having the extended description, as shown in
the following example.

EXAMPLE 21

<!-- Provision of an extended description -->
<iimmgg src="pythagorean.jpg" alt="Pythagorean Theorem" aria-details="det">
<ddeettaaiillss id="det">

<ssuummmmaarryy>Example</ssuummmmaarryy>
<pp>

 The Pythagorean Theorem is a relationship in Euclidean Geometry between the three sides of
 a right triangle, where the square of the hypotenuse is the sum of the squares of the two
 opposing sides.

</pp>
<pp>

 The following drawing illustrates an application of the Pythagorean Theorem when used to
 construct a skateboard ramp.

</pp>
<oobbjjeecctt data="skatebd-ramp.svg" type="image/svg+xml"></oobbjjeecctt>
<pp>

 In this example you will notice a skateboard with a base and vertical board whose width
 is the width of the ramp. To compute how long the ramp must be, simply calculate the
 base length, square it, sum it with the square of the height of the ramp, and take the
 square root of the sum.

</pp>
</ddeettaaiillss>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

226 of 298 27/08/2025, 04:00

https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_name
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_name
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_description
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd_description

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference

Indicates that the element is perceivable but disabled, so it is not editable or otherwise operable. See related
aria-hidden and aria-readonly.

For example, irrelevant options in a radio group may be disabled. Disabled elements might not receive focus
from the tab order. For some disabled elements, applications might choose not to support navigation to
descendants. In addition to setting the aria-disabled attribute, authors SHOULD change the appearance
(grayed out, etc.) to indicate that the item has been disabled.

The state of being disabled applies to the current element and all focusable descendant elements of the
element on which the aria-disabled attribute is applied.

NOTE

While aria-disabled and proper scripting can successfully disable an element with role link, fully
disabling a host language equivalent can be problematic. Authors are advised not to use aria-disabled
on elements that cannot be disabled through features of the host language alone.

NOTE: Usage on columnheader, rowheader and row

While aria-disabled is currently supported on columnheader, rowheader, and row, in a future
version the working group plans to prohibit its use on elements with any of those three roles except when
they are in the context of a grid or treegrid.

EXAMPLE 22

<!-- Provision of an extended description -->
<iimmgg src="pythagorean.jpg" alt="Pythagorean Theorem" aria-details="det">
<pp>
 See an <aa href="http://foo.com/pt.html" id="det">Application of the Pythagorean Theorem</
</pp>

aarriiaa--ddiissaabblleedd state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

227 of 298 27/08/2025, 04:00

NOTE

This state is being deprecated as a global state in ARIA 1.2. In future versions it will only be allowed on
roles where it is specifically supported.

Characteristics:

Characteristic Value

Used in Roles: application

button

composite

gridcell

group

input

link

menuitem

scrollbar

separator

tab

Inherits into Roles: checkbox

columnheader

combobox

grid

listbox

menu

menubar

menuitemcheckbox

menuitemradio

option

radio

radiogroup

row

rowheader

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

228 of 298 27/08/2025, 04:00

Characteristic Value
searchbox

select

slider

spinbutton

switch

tablist

textbox

toolbar

tree

treegrid

treeitem

Value: true/false

Values:

Value Description

false (default) The element is enabled.

true The element and all focusable descendants are disabled
and its value cannot be changed by the user.

[Deprecated in ARIA 1.1] Indicates what functions can be performed when a dragged object is released on
the drop target.

NOTE

The aria-dropeffect property is expected to be replaced by a new feature in a future version of WAI-
ARIA. Authors are therefore advised to treat aria-dropeffect as deprecated.

This property allows assistive technologies to convey the possible drag options available to users, including
whether a pop-up menu of choices is provided by the application. Typically, drop effect functions can only be
provided once an object has been grabbed for a drag operation as the drop effect functions available are
dependent on the object being dragged.

More than one drop effect may be supported for a given element. Therefore, the value of this attribute is a

aarriiaa--ddrrooppeeffffeecctt property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

229 of 298 27/08/2025, 04:00

space-separated set of tokens indicating the possible effects, or none if there is no supported operation. In
addition to setting the aria-dropeffect attribute, authors SHOULD show a visual indication of potential
drop targets.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: token list

Values:

Value Description

copy A duplicate of the source object will be dropped into the
target.

execute A function supported by the drop target is executed,
using the drag source as an input.

link A reference or shortcut to the dragged object will be
created in the target object.

move The source object will be removed from its current
location and dropped into the target.

none (default) No operation can be performed; effectively cancels the
drag operation if an attempt is made to drop on this
object. Ignored if combined with any other token value.
e.g., 'none copy' is equivalent to a 'copy' value.

popup There is a popup menu or dialog that allows the user to
choose one of the drag operations (copy, move, link,
execute) and any other drag functionality, such as
cancel.

Identifies the element that provides an error message for an object. See related aria-invalid and aria-
describedby.

The aria-errormessage attribute references another element that contains error message text. Authors
MUST use aria-invalid in conjunction with aria-errormessage.

When the value of an object is not valid, aria-invalid is set to true, which indicates that the message
contained by an element referenced by aria-errormessage is pertinent.

aarriiaa--eerrrroorrmmeessssaaggee property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

230 of 298 27/08/2025, 04:00

When an object is in a valid state, it has either aria-invalid set to false or it does not have the aria-
invalid attribute. Authors MAY use aria-errormessage on an object that is currently valid, but only if
the element referenced by aria-errormessage is hidden, because the message it contains is not pertinent.

When aria-errormessage is pertinent, authors MUST ensure the content is not hidden so users can
navigate to and examine the error message. Similarly, when aria-errormessage is not pertinent, authors
MUST either ensure the content is hidden or remove the aria-errormessage attribute or its value.

User agents MUST NOT expose aria-errormessage for an object with an aria-invalid value of
false.

Authors MAY call attention to a newly rendered error message with a live region by either applying an
aria-live property or using one of the live region roles, such as alert. A live region is appropriate when
an error message is displayed to users after they have provided an invalid value.

A typical message describes what is wrong and informs users what is required. For example, an error
message might be, “Invalid time: the time must be between 9:00 AM and 5:00 PM.” The following example
code shows markup for an initial valid state and for a subsequent invalid state. Note the changes to aria-
invalid on the text input object, and to aria-live on the element containing the text of the error message:

NOTE

This example uses aria-live="assertive" to indicate that assistive technologies should immediately
announce the error message rather than completing other queued announcements first. This increases the
likelihood that users are aware of the error message before they move focus out of the input.

NOTE

This state is being deprecated as a global state in ARIA 1.2. In future versions it will only be allowed on
roles where it is specifically supported.

EXAMPLE 23

<!-- Initial valid state -->
<llaabbeell for="startTime"> Please enter a start time for the meeting: </llaabbeell>
<iinnppuutt id="startTime" type="text" aria-errormessage="msgID" value="" aria-invalid="false">
<ssppaann id="msgID" aria-live="assertive"><ssppaann style="visibility:hidden">Invalid time: the time must be betwee

<!-- User has input an invalid value -->
<llaabbeell for="startTime"> Please enter a start time for the meeting: </llaabbeell>
<iinnppuutt id="startTime" type="text" aria-errormessage="msgID" aria-invalid="true" value="11:30 PM"
<ssppaann id="msgID" aria-live="assertive"><ssppaann style="visibility:visible">Invalid time: the time must be betwe

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

231 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Used in Roles: application

checkbox

combobox

gridcell

listbox

radiogroup

slider

spinbutton

textbox

tree

Inherits into Roles: columnheader

rowheader

searchbox

switch

treegrid

Value: ID reference

Indicates whether a grouping element owned or controlled by this element is expanded or collapsed.

The aria-expanded attribute is applied to a focusable, interactive element that toggles visibility of content
in another element. For example, it is applied to a parent treeitem to indicate whether its child branch of
the tree is shown. Similarly, it can be applied to a button that controls visibility of a section of page content.

If a grouping container that can be expanded or collapsed is not owned by the element that has the aria-
expanded attribute, the author SHOULD identify the controlling relationship by referencing the container
from the element that has aria-expanded with the aria-controls property.

Characteristics:

Characteristic Value

Used in Roles: application

aarriiaa--eexxppaannddeedd state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

232 of 298 27/08/2025, 04:00

Characteristic Value
button

checkbox

combobox

gridcell

link

listbox

menuitem

row

rowheader

tab

treeitem

Inherits into Roles: columnheader

menuitemcheckbox

menuitemradio

rowheader

switch

Value: true/false/undefined

Values:

Value Description

false The grouping element this element owns or controls is
collapsed.

true The grouping element this element owns or controls is
expanded.

undefined (default) The element does not own or control a grouping
element that is expandable.

Identifies the next element (or elements) in an alternate reading order of content which, at the user's
discretion, allows assistive technology to override the general default of reading in document source order.

When aria-flowto has a single ID reference, it allows assistive technologies to, at the user's request,

aarriiaa--fflloowwttoo property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

233 of 298 27/08/2025, 04:00

forego normal document reading order and go to the targeted object. However, when aria-flowto is
provided with multiple ID references, assistive technologies SHOULD present the referenced elements as
path choices.

In the case of one or more ID references, user agents or assistive technologies SHOULD give the user the
option of navigating to any of the targeted elements. The name of the path can be determined by the name of
the target element of the aria-flowto attribute. Accessibility APIs can provide named path relationships.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

[Deprecated in ARIA 1.1] Indicates an element's "grabbed" state in a drag-and-drop operation.

NOTE

The aria-grabbed state is expected to be replaced by a new feature in a future version of WAI-ARIA.
Authors are therefore advised to treat aria-grabbed as deprecated.

Setting aria-grabbed to true indicates that the element has been selected for dragging. Setting aria-
grabbed to false indicates that the element can be grabbed for a drag-and-drop operation, but is not
currently grabbed. If aria-grabbed is unspecified or set to undefined (default), the element cannot be
grabbed.

When aria-grabbed is set to true, authors SHOULD update the aria-dropeffect attribute of all
potential drop targets. When an element is not grabbed (the value is set to false or undefined, or the
attribute is removed), authors SHOULD revert the aria-dropeffect attributes of the associated drop
targets to none.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false/undefined

Values:

Value Description

aarriiaa--ggrraabbbbeedd state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

234 of 298 27/08/2025, 04:00

Value Description

false Indicates that the element supports being dragged.

true Indicates that the element has been "grabbed" for
dragging.

undefined (default) Indicates that the element does not support being
dragged.

Indicates the availability and type of interactive popup element, such as menu or dialog, that can be triggered
by an element.

A popup element usually appears as a block of content that is on top of other content. Authors MUST ensure
that the role of the element that serves as the container for the popup content is menu, listbox, tree, grid,
or dialog, and that the value of aria-haspopup matches the role of the popup container.

For the popup element to be keyboard accessible, authors SHOULD ensure that the element that can trigger
the popup is focusable, that there is a keyboard mechanism for opening the popup, and that the popup
element manages focus of all its descendants as described in Managing Focus.

The aria-haspopup property is a token type. User agents MUST treat any value of aria-haspopup that is
not included in the list of allowed values, including an empty string, as if the value false had been provided.
To provide backward compatibility with ARIA 1.0 content, user agents MUST treat an aria-haspopup
value of true as equivalent to a value of menu.

Assistive technologies SHOULD NOT expose the aria-haspopup property if it has a value of false.

NOTE

A tooltip is not considered to be a popup in this context.

NOTE

aria-haspopup is most relevant to use when there is a visual indicator in the element that triggers the
popup. For example, many controls styled with a downward pointing triangle, chevron, or ellipsis (three
consecutive dots) have become standard visual indicators that a popup will display when the control is
activated. If some functional difference is relevant to display to a sighted user by means of a different
visual style, that functional difference is usually relevant to convey to users of assistive technology. If
there is no visual indication that an element will trigger a popup, authors are advised to consider whether
use of aria-haspopup is necessary, and avoid using it when it's not.

aarriiaa--hhaassppooppuupp property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

235 of 298 27/08/2025, 04:00

NOTE

This property is being deprecated as a global property in ARIA 1.2. In future versions it will only be
allowed on roles where it is specifically supported.

Characteristics:

Characteristic Value

Related Concepts: aria-controls

Used in Roles: application

button

combobox

gridcell

link

menuitem

slider

tab

textbox

treeitem

Inherits into Roles: columnheader

menuitemcheckbox

menuitemradio

rowheader

searchbox

Value: token

Values:

Value Description

false (default) Indicates the element does not have a popup.

true Indicates the popup is a menu.

menu Indicates the popup is a menu.

listbox Indicates the popup is a listbox.

tree Indicates the popup is a tree.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

236 of 298 27/08/2025, 04:00

Value Description

grid Indicates the popup is a grid.

dialog Indicates the popup is a dialog.

Indicates whether the element is exposed to an accessibility API. See related aria-disabled.

User agents determine an element's hidden status based on whether it is rendered, and the rendering is usually
controlled by CSS. For example, an element whose display property is set to none is not rendered. An
element is considered hidden if it, or any of its ancestors are not rendered or have their aria-hidden
attribute value set to true.

Authors MAY, with caution, use aria-hidden to hide visibly rendered content from assistive technologies only
if the act of hiding this content is intended to improve the experience for users of assistive technologies by
removing redundant or extraneous content. Authors using aria-hidden to hide visible content from screen
readers MUST ensure that identical or equivalent meaning and functionality is exposed to assistive
technologies.

NOTE

Authors are advised to use extreme caution and consider a wide range of disabilities when hiding visibly
rendered content from assistive technologies. For example, a sighted, dexterity-impaired individual may
use voice-controlled assistive technologies to access a visual interface. If an author hides visible link text
"Go to checkout" and exposes similar, yet non-identical link text "Check out now" to the accessibility
API, the user may be unable to access the interface they perceive using voice control. Similar problems
may also arise for screen reader users. For example, a sighted telephone support technician may attempt
to have the blind screen reader user click the "Go to checkout" link, which they may be unable to find
using a type-ahead item search ("Go to…").

NOTE

At the time of this writing, aria-hidden="false" is known to work inconsistently in browsers. As
future implementations improve, use caution and test thoroughly before relying on this approach.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: true/false/undefined

aarriiaa--hhiiddddeenn state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

237 of 298 27/08/2025, 04:00

Values:

Value Description

false The element is exposed to the accessibility API as if it
was rendered.

true The element is hidden from the accessibility API.

undefined (default) The element's hidden state is determined by the user
agent based on whether it is rendered.

Indicates the entered value does not conform to the format expected by the application. See related aria-
errormessage.

If the value is computed to be invalid or out-of-range, the application author SHOULD set this attribute to
true. User agents SHOULD inform the user of the error. Application authors SHOULD provide suggestions
for corrections if they are known.

When the user attempts to submit data involving a field for which aria-required is true, authors MAY
use the aria-invalid attribute to signal there is an error. However, if the user has not attempted to submit
the form, authors SHOULD NOT set the aria-invalid attribute on required widgets simply because the
user has not yet entered data.

For future expansion, the aria-invalid attribute is a token type. Any value not recognized in the list of
allowed values MUST be treated by user agents as if the value true had been provided. If the attribute is not
present, or its value is false, or its value is an empty string, the default value of false applies.

NOTE

This state is being deprecated as a global state in ARIA 1.2. In future versions it will only be allowed on
roles where it is specifically supported.

Characteristics:

Characteristic Value

Used in Roles: application

checkbox

combobox

gridcell

listbox

aarriiaa--iinnvvaalliidd state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

238 of 298 27/08/2025, 04:00

Characteristic Value
radiogroup

slider

spinbutton

textbox

tree

Inherits into Roles: columnheader

rowheader

searchbox

switch

treegrid

Value: token

Values:

Value Description

grammar A grammatical error was detected.

false (default) There are no detected errors in the value.

spelling A spelling error was detected.

true The value entered by the user has failed validation.

Indicates keyboard shortcuts that an author has implemented to activate or give focus to an element.

The value of the aria-keyshortcuts attribute is a space-separated list of keyboard shortcuts that can be
pressed to activate a command or textbox widget. The keys defined in the shortcuts represent the physical
keys pressed and not the actual characters generated. Each keyboard shortcut consists of one or more tokens
delimited by the plus sign ("+") representing zero or more modifier keys and exactly one non-modifier key
that must be pressed simultaneously to activate the given shortcut.

Authors MUST specify modifier keys exactly according to the UI Events KeyboardEvent key Values spec
[uievents-key] - for example, "Alt", "Control", "Shift", "Meta", or "AltGraph". Note that Meta corresponds to
the Command key, and Alt to the Option key, on Apple computers.

The valid names for non-modifier keys are any printable character such as "A", "B", "1", "2", "$", "Plus" for
a plus sign, "Space" for the spacebar, or the names of any other non-modifier key specified in the UI Events

aarriiaa--kkeeyysshhoorrttccuuttss property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

239 of 298 27/08/2025, 04:00

https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/

KeyboardEvent key Values spec [uievents-key] - for example, "Enter", "Tab", "ArrowRight", "PageDown",
"Escape", or "F1". The use of "Space" for the spacebar is an exception to the UI Events KeyboardEvent key
Values spec [uievents-key] as the space or spacebar key is encoded as ' ' and would be treated as a
whitespace character.

Authors MUST ensure modifier keys come first when they are part of a keyboard shortcut. Authors MUST
ensure that required non-modifier keys come last when they are part of a shortcut. The order of the modifier
keys is not otherwise significant, so "Alt+Shift+T" and "Shift+Alt+T" are equivalent, but "T+Shift+Alt" is
not valid because all of the modifier keys don't come first, and "Alt" is not valid because it doesn't include at
least one non-modifier key.

When specifying an alphabetic key, both the uppercase and lowercase variants are considered equivalent: "a"
and "A" are the same.

When implementing keyboard shortcuts authors should consider the keyboards they intend to support to
avoid unintended results. Keyboard designs vary significantly based on the device used and the languages
supported. For example, many modifier keys are used in conjunction with other keys to create common
punctuation symbols, create number characters, swap keyboard sides on bilingual keyboards to switch
languages, and perform a number of other functions.

For many supported keyboards, authors can prevent conflicts by avoiding keys other than ASCII letters, as
number characters and common punctuation often require modifiers. Here, the keyboard shortcut entered
does not equate to the key generated. For example, in French keyboard layouts, the number characters are not
available until you press the Control key, so a keyboard shortcut defined as "Control+2" would be ambiguous
as this is how one would type the "2" character on a French keyboard.

If the character used is determined by a modifier key, the author MUST specify the actual key used to
generate the character, that is generated by the key, and not the resulting character. This convention enables
the assistive technology to accurately convey what keys must be used to generate the shortcut. For example,
on most U.S. English keyboards, the percent sign "%" can be input by pressing Shift+5. The correct way to
specify this shortcut is "Shift+5". It is incorrect to specify "%" or "Shift+%". However, note that on some
international keyboards the percent sign may be an unmodified key, in which case "%" and "Shift+%" could
be correct on those keyboards.

If the key that needs to be specified is illegal in the host language or would cause a string to be terminated,
authors MUST use the string escaping sequence of the host language to specify it. For example, the double-
quote character can be encoded as "Shift+'" in HTML.

Examples of valid keyboard shortcuts include:

• "A"

• "Shift+Space"

• "Control+Alt+."

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

240 of 298 27/08/2025, 04:00

https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/

• "Control+Shift+'"

• "Alt+Shift+P Control+F"

• "Meta+C Meta+Shift+C"

User agents MUST NOT change keyboard behavior in response to the aria-keyshortcuts attribute.
Authors MUST handle scripted keyboard events to process aria-keyshortcuts. The aria-
keyshortcuts attribute exposes the existence of these shortcuts so that assistive technologies can
communicate this information to users.

Authors SHOULD provide a way to expose keyboard shortcuts so that all users may discover them, such as
through the use of a tooltip. Authors MUST ensure that aria-keyshortcuts applied to disabled elements
are unavailable.

Authors SHOULD avoid implementing shortcut keys that inhibit operating system, user agent, or assistive
technology functionality. This requires the author to carefully consider both which keys to assign and the
contexts and conditions in which the keys are available to the user. For guidance, see the keyboard shortcuts
section of the WAI-ARIA Authoring Practices.

Characteristics:

Characteristic Value

Related Concepts: Keyboard shortcut

Used in Roles: All elements of the base markup

Value: string

Defines a string value that labels the current element. See related aria-labelledby.

The purpose of aria-label is the same as that of aria-labelledby. It provides the user with a
recognizable name of the object. The most common accessibility API mapping for a label is the accessible
name property.

If the label text is available in the DOM (i.e. typically visible text content), authors SHOULD use aria-
labelledby and SHOULD NOT use aria-label. There may be instances where the name of an element
cannot be determined programmatically from the DOM, and there are cases where referencing DOM content
is not the desired user experience. Most host languages provide an attribute that could be used to name the
element (e.g., the title attribute in [HTML]), yet this could present a browser tooltip. In the cases where
DOM content or a tooltip is undesirable, authors MAY set the accessible name of the element using aria-
label. As required by the accessible name and description computation, user agents give precedence to
aria-labelledby over aria-label when computing the accessible name property.

aarriiaa--llaabbeell property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

241 of 298 27/08/2025, 04:00

https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://en.wikipedia.org/wiki/Keyboard_shortcut
https://en.wikipedia.org/wiki/Keyboard_shortcut

Characteristics:

Characteristic Value

Related Concepts: title attribute in [HTML]

Used in Roles: All elements of the base markup except for the
following roles: caption, code, deletion,
emphasis, generic, insertion, paragraph,
presentation, strong, subscript, superscript

Value: string

Identifies the element (or elements) that labels the current element. See related aria-describedby.

The purpose of aria-labelledby is the same as that of aria-label. It provides the user with a
recognizable name of the object. The most common accessibility API mapping for a label is the accessible
name property.

If the interface is such that it is not possible to have a visible label on the screen, authors SHOULD use
aria-label and SHOULD NOT use aria-labelledby. As required by the accessible name and
description computation, user agents give precedence to aria-labelledby over aria-label when
computing the accessible name property.

The aria-labelledby attribute is similar to aria-describedby in that both reference other elements to
calculate a text alternative, but a label should be concise, where a description is intended to provide more
verbose information.

NOTE

The expected spelling of this property in U.S. English is "labeledby." However, the accessibility API
features to which this property is mapped have established the "labelledby" spelling. This property is
spelled that way to match the convention and minimize the difficulty for developers.

Characteristics:

Characteristic Value

Related Concepts: <label> in [HTML]

Used in Roles: All elements of the base markup except for the
following roles: caption, code, deletion,
emphasis, generic, insertion, paragraph,
presentation, strong, subscript, superscript

aarriiaa--llaabbeelllleeddbbyy property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

242 of 298 27/08/2025, 04:00

Characteristic Value

Value: ID reference list

Defines the hierarchical level of an element within a structure.

This can be applied inside trees to tree items, to headings inside a document, to nested grids, nested tablists
and to other structural items that may appear inside a container or participate in an ownership hierarchy. The
value for aria-level is an integer greater than or equal to 1.

Levels increase with depth. If the DOM ancestry does not accurately represent the level, authors SHOULD
explicitly define the aria-level attribute.

This attribute is applied to elements that act as leaf nodes within the orientation of the set, for example, on
elements with role treeitem rather than elements with role group. This means that multiple elements in a
set may have the same value for this attribute. Although it would be less repetitive to provide a single value
on the container, restricting this to leaf nodes ensures that there is a single way for assistive technologies to
use the attribute.

If the DOM ancestry accurately represents the level, the user agent can calculate the level of an item from the
document structure. This attribute can be used to provide an explicit indication of the level when that is not
possible to calculate from the document structure or the aria-owns attribute. User agent support for
automatic calculation of level may vary; authors SHOULD test with user agents and assistive technologies to
determine whether this attribute is needed. If the author intends for the user agent to calculate the level, the
author SHOULD omit this attribute.

NOTE

In the case of a treegrid, aria-level is supported on elements with the role row, not elements with
role gridcell. At first glance, this may seem inconsistent with the application of aria-level on
treeitem elements, but it is consistent in that the row acts as the leaf node within the vertical
orientation of the grid, whereas the gridcell is a leaf node within the horizontal orientation of each
row. Level is not supported on sets of cells within rows, so the aria-level attribute is applied to the
element with the role row.

Characteristics:

Characteristic Value

Used in Roles: heading

listitem

aarriiaa--lleevveell property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

243 of 298 27/08/2025, 04:00

Characteristic Value
row

Inherits into Roles: treeitem

Value: integer

Indicates that an element will be updated, and describes the types of updates the user agents, assistive
technologies, and user can expect from the live region.

The values of this attribute are expressed in degrees of importance. When regions are specified as polite,
assistive technologies will notify users of updates but generally do not interrupt the current task, and updates
take low priority. When regions are specified as assertive, assistive technologies will immediately notify
the user, and could potentially clear the speech queue of previous updates.

Politeness levels are essentially an ordering mechanism for updates and serve as a strong suggestion to user
agents or assistive technologies. The value may be overridden by user agents, assistive technologies, or the
user. For example, if assistive technologies can determine that a change occurred in response to a key press or
a mouse click, the assistive technologies may present that change immediately even if the value of the aria-
live attribute states otherwise.

Since different users have different needs, it is up to the user to tweak his or her assistive technologies'
response to a live region with a certain politeness level from the commonly defined baseline. Assistive
technologies may choose to implement increasing and decreasing levels of granularity so that the user can
exercise control over queues and interruptions.

When the property is not set on an object that needs to send updates, the politeness level is the value of the
nearest ancestor that sets the aria-live attribute.

The aria-live attribute is the primary determination for the order of presentation of changes to live
regions. Implementations will also consider the default level of politeness in a role when the aria-live
attribute is not set in the ancestor chain (e.g., log changes are polite by default). Items which are
assertive will be presented immediately, followed by polite items. User agents or assistive technologies
MAY choose to clear queued changes when an assertive change occurs. (e.g., changes in an assertive region
may remove all currently queued changes)

When live regions are marked as polite, assistive technologies SHOULD announce updates at the next
graceful opportunity, such as at the end of speaking the current sentence or when the user pauses typing.
When live regions are marked as assertive, assistive technologies SHOULD notify the user immediately.
Because an interruption may disorient users or cause them to not complete their current task, authors
SHOULD NOT use the assertive value unless the interruption is imperative.

aarriiaa--lliivvee property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

244 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: token

Values:

Value Description

assertive Indicates that updates to the region have the highest
priority and should be presented the user immediately.

off (default) Indicates that updates to the region should not be
presented to the user unless the user is currently focused
on that region.

polite Indicates that updates to the region should be presented
at the next graceful opportunity, such as at the end of
speaking the current sentence or when the user pauses
typing.

Indicates whether an element is modal when displayed.

The aria-modal attribute is used to indicate that the presence of a "modal" element precludes usage of
other content on the page. For example, when a modal dialog is displayed, it is expected that the user's
interaction is limited to the contents of the dialog, until the modal dialog loses focus or is no longer
displayed.

When a modal element is displayed, assistive technologies SHOULD navigate to the element unless focus
has explicitly been set elsewhere. Assistive technologies MAY limit navigation to the modal element's
contents. If focus moves to an element outside the modal element, assistive technologies SHOULD NOT
limit navigation to the modal element.

When a modal element is displayed, authors MUST ensure the interface can be controlled using only
descendants of the modal element. In other words, if a modal dialog has a close button, the button should be a
descendant of the dialog. When a modal element is displayed, authors SHOULD mark all other contents as
inert (such as "inert subtrees" in HTML) if the ability to do so exists in the host language.

Characteristics:

Characteristic Value

aarriiaa--mmooddaall property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

245 of 298 27/08/2025, 04:00

Characteristic Value

Used in Roles: window

Inherits into Roles: alertdialog

dialog

Value: true/false

Values:

Value Description

false (default) Element is not modal.

true Element is modal.

Indicates whether a text box accepts multiple lines of input or only a single line.

NOTE

In most user agent implementations, the default behavior of the ENTER or RETURN key is different
between the single-line and multi-line text fields in HTML. When user has focus in a single-line <input
type="text"> element, the keystroke usually submits the form. When user has focus in a multi-line
<textarea> element, the keystroke inserts a line break. The WAI-ARIA textbox role differentiates
these types of boxes with the aria-multiline attribute, so authors are advised to be aware of this
distinction when designing the field.

Characteristics:

Characteristic Value

Used in Roles: textbox

Inherits into Roles: searchbox

Value: true/false

Values:

Value Description

false (default) This is a single-line text box.

true This is a multi-line text box.

aarriiaa--mmuullttiilliinnee property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

246 of 298 27/08/2025, 04:00

Indicates that the user may select more than one item from the current selectable descendants.

Authors SHOULD ensure that selected descendants have the aria-selected attribute set to true, and
selectable descendant have the aria-selected attribute set to false. Authors SHOULD NOT use the
aria-selected attribute on descendants that are not selectable.

NOTE

Lists and trees are examples of roles that might allow users to select more than one item at a time.

Characteristics:

Characteristic Value

Used in Roles: grid

listbox

tablist

tree

Inherits into Roles: treegrid

Value: true/false

Values:

Value Description

false (default) Only one item can be selected.

true More than one item in the widget may be selected at a
time.

Indicates whether the element's orientation is horizontal, vertical, or unknown/ambiguous.

NOTE

In ARIA 1.1, the default value for aria-orientation changed from horizontal to undefined.
Implicit defaults are defined on some roles (e.g., slider defaults to horizontal; scrollbar defaults to
vertical) but remain undefined on roles where an expected default orientation is ambiguous (e.g.,
radiogroup).

aarriiaa--mmuullttiisseelleeccttaabbllee property

aarriiaa--oorriieennttaattiioonn property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

247 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Used in Roles: scrollbar

select

separator

slider

tablist

toolbar

Inherits into Roles: listbox

menu

menubar

radiogroup

tree

treegrid

Value: token

Values:

Value Description

horizontal The element is oriented horizontally.

undefined (default) The element's orientation is unknown/ambiguous.

vertical The element is oriented vertically.

Identifies an element (or elements) in order to define a visual, functional, or contextual parent/child
relationship between DOM elements where the DOM hierarchy cannot be used to represent the relationship.
See related aria-controls.

The value of the aria-owns attribute is a space-separated ID reference list that references one or more
elements in the document by ID. The reason for adding aria-owns is to expose a parent/child contextual
relationship to assistive technologies that is otherwise impossible to infer from the DOM.

If an element has both aria-owns and DOM children then the order of the child elements with respect to the
parent/child relationship is the DOM children first, then the elements referenced in aria-owns. If the author

aarriiaa--oowwnnss property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

248 of 298 27/08/2025, 04:00

intends that the DOM children are not first, then list the DOM children in aria-owns in the desired order.
Authors SHOULD NOT use aria-owns as a replacement for the DOM hierarchy. If the relationship is
represented in the DOM, do not use aria-owns. Authors MUST ensure that an element's ID is not specified
in more than one other element's aria-owns attribute at any time. In other words, an element can have only
one explicit owner.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: ID reference list

Defines a short hint (a word or short phrase) intended to aid the user with data entry when the control has no
value. A hint could be a sample value or a brief description of the expected format.

Authors SHOULD NOT use aria-placeholder instead of a label as their purposes are different: The label
indicates what kind of information is expected. The placeholder text is a hint about the expected value. See
related aria-labelledby and aria-label.

Authors SHOULD present this hint to the user by displaying the hint text at any time the control's value is
the empty string. This includes cases where the control first receives focus, and when users remove a
previously-entered value.

NOTE

As is the case with the related placeholder attribute in [HTML], use of placeholder text as a
replacement for a displayed label can reduce the accessibility and usability of the control for a range of
users including older users and users with cognitive, mobility, fine motor skill or vision impairments.
While the hint given by the control's label is shown at all times, the short hint given in the placeholder
attribute is only shown before the user enters a value. Furthermore, placeholder text may be mistaken for
a pre-filled value, and as commonly implemented the default color of the placeholder text provides
insufficient contrast and the lack of a separate visible label reduces the size of the hit region available for
setting focus on the control.

NOTE

The following examples do not use the HTML label element as it cannot be used to label HTML
elements with contenteditable.

aarriiaa--ppllaacceehhoollddeerr property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

249 of 298 27/08/2025, 04:00

The following example shows a searchbox in which the user has entered a value:

The following example shows the same searchbox in which the user has not yet entered a value or has
removed a previously-entered value:

Characteristics:

Characteristic Value

Related Concepts: placeholder attribute in [HTML]

Used in Roles: textbox

Inherits into Roles: searchbox

Value: string

Defines an element's number or position in the current set of listitems or treeitems. Not required if all
elements in the set are present in the DOM. See related aria-setsize.

If all items in a set are present in the document structure, it is not necessary to set this attribute, as the user
agent can automatically calculate the set size and position for each item. However, if only a portion of the set
is present in the document structure at a given moment, this property is needed to provide an explicit
indication of an element's position.

The following example shows items 5 through 8 in a set of 16.

EXAMPLE 24

<ssppaann id="label">Birthday:</ssppaann>
<ddiivv contenteditable role="searchbox" aria-labelledby="label" aria-placeholder="MM-DD-YYYY"

EXAMPLE 25

<ssppaann id="label">Birthday:</ssppaann>
<ddiivv contenteditable role="searchbox" aria-labelledby="label" aria-placeholder="MM-DD-YYYY"

aarriiaa--ppoossiinnsseett property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

250 of 298 27/08/2025, 04:00

Authors MUST set the value for aria-posinset to an integer greater than or equal to 1, and less than or
equal to the size of the set when that size is known. Authors SHOULD use aria-setsize.

When exposing aria-posinset on a menuitem, menuitemcheckbox, or menuitemradio, authors
SHOULD set the value of aria-posinset with respect to the total number of items in the menu, excluding
any separators.

Characteristics:

Characteristic Value

Used in Roles: article

listitem

menuitem

option

radio

row

tab

Inherits into Roles: menuitemcheckbox

menuitemradio

treeitem

Value: integer

Indicates the current "pressed" state of toggle buttons. See related aria-checked and aria-selected.

Toggle buttons require a full press-and-release cycle to change their value. Activating it once changes the
value to true, and activating it another time changes the value back to false. A value of mixed means that

EXAMPLE 26

<hh22 id="label_fruit"> Available Fruit </hh22>
<uull role="listbox" aria-labelledby="label_fruit">

<llii role="option" aria-setsize="16" aria-posinset="5"> apples </llii>
<llii role="option" aria-setsize="16" aria-posinset="6"> bananas </llii>
<llii role="option" aria-setsize="16" aria-posinset="7"> cantaloupes </llii>
<llii role="option" aria-setsize="16" aria-posinset="8"> dates </llii>

</uull>

aarriiaa--pprreesssseedd state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

251 of 298 27/08/2025, 04:00

the values of more than one item controlled by the button do not all share the same value. If the attribute is
not present, the button is not a toggle button.

The aria-pressed attribute is similar but not identical to the aria-checked attribute. Operating systems
support pressed on buttons and checked on checkboxes.

Characteristics:

Characteristic Value

Used in Roles: button

Value: tristate

Values:

Value Description

false The element supports being pressed but is not currently
pressed.

mixed Indicates a mixed mode value for a tri-state toggle
button.

true The element is pressed.

undefined (default) The element does not support being pressed.

Indicates that the element is not editable, but is otherwise operable. See related aria-disabled.

This means the user can read but not set the value of the widget. Readonly elements are relevant to the user,
and application authors SHOULD NOT restrict navigation to the element or its focusable descendants. Other
actions such as copying the value of the element are also supported. This is in contrast to disabled elements,
to which applications might not allow user navigation to descendants.

Examples include:

• A form element which represents a constant.

• Row or column headers in a spreadsheet grid.

• The result of a calculation such as a shopping cart total.

Characteristics:

Characteristic Value

Related Concepts: readonly attribute in [HTML]

aarriiaa--rreeaaddoonnllyy property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

252 of 298 27/08/2025, 04:00

Characteristic Value

Used in Roles: checkbox

combobox

grid

gridcell

listbox

radiogroup

slider

spinbutton

textbox

Inherits into Roles: columnheader

rowheader

searchbox

switch

treegrid

Value: true/false

Values:

Value Description

false (default) The user can set the value of the element.

true The user cannot change the value of the element.

Indicates what notifications the user agent will trigger when the accessibility tree within a live region is
modified. See related aria-atomic.

The attribute is represented as a space-separated list of the following values: additions, removals, text;
or a single catch-all value all.

This is used to describe semantically meaningful changes, as opposed to merely presentational ones. For
example, nodes that are removed from the top of a log are merely removed for purposes of creating room for
other entries, and the removal of them does not have meaning. However, in the case of a buddy list, removal
of a buddy name indicates that they are no longer online, and this is a meaningful event. In that case aria-

aarriiaa--rreelleevvaanntt property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

253 of 298 27/08/2025, 04:00

relevant will be set to all. When the aria-relevant attribute is not provided, the default value,
additions text, indicates that text modifications and node additions are relevant, but that node removals
are irrelevant.

NOTE

aria-relevant values of removals or all are to be used sparingly. Assistive technologies only need to
be informed of content removal when its removal represents an important change, such as a buddy
leaving a chat room.

NOTE

Text removals should only be considered relevant if one of the specified values is 'removals' or 'all'. For
example, for a text change from 'foo' to 'bar' in a live region with a default aria-relevant value, the
text addition ('bar') would be spoken, but the text removal ('foo') would not.

aria-relevant is an optional attribute of live regions. This is a suggestion to assistive technologies, but
assistive technologies are not required to present changes of all the relevant types.

When aria-relevant is not defined, an element's value is inherited from the nearest ancestor with a
defined value. Although the value is a token list, inherited values are not additive; the value provided on a
descendant element completely overrides any inherited value from an ancestor element.

When text changes are denoted as relevant, user agents MUST monitor any descendant node change that
affects the accessible name and description computation of the live region as if the accessible name were
determined from contents (nameFrom: contents). For example, a text change would be triggered if the HTML
alt attribute of a contained image changed. However, no change would be triggered if there was a text
change to a node outside the live region, even if that node was referenced (via aria-labelledby) by an
element contained in the live region.

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: token list

Values:

Value Description

additions Element nodes are added to the accessibility tree within
the live region.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

254 of 298 27/08/2025, 04:00

Value Description

additions text (default) Equivalent to the combination of values, "additions
text".

all Equivalent to the combination of all values, "additions
removals text".

removals Text content, a text alternative, or an element node
within the live region is removed from the accessibility
tree.

text Text content or a text alternative is added to any
descendant in the accessibility tree of the live region.

Indicates that user input is required on the element before a form may be submitted.

For example, if the user needs to fill in an address field, the author will need to set the field's aria-
required attribute to true.

NOTE

The fact that the element is required is often presented visually (such as a sign or symbol after the
widget). Using the aria-required attribute allows the author to explicitly convey to assistive
technologies that an element is required.

Unless an exactly equivalent native attribute is available, host languages SHOULD allow authors to use the
aria-required attribute on host language form elements that require input or selection by the user.

Characteristics:

Characteristic Value

Related Concepts: required attribute in [HTML]

Used in Roles: checkbox

combobox

gridcell

listbox

radiogroup

spinbutton

textbox

aarriiaa--rreeqquuiirreedd property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

255 of 298 27/08/2025, 04:00

Characteristic Value
tree

Inherits into Roles: columnheader

rowheader

searchbox

switch

treegrid

Value: true/false

Values:

Value Description

false (default) User input is not necessary to submit the form.

true Users need to provide input on an element before a form
is submitted.

Defines a human-readable, author-localized description for the role of an element.

Some assistive technologies, such as screen readers, present the role of an element as part of the user
experience. Such assistive technologies typically localize the name of the role, and they may customize it as
well. Users of these assistive technologies depend on the presentation of the role name, such as "region,"
"button," or "slider," for an understanding of the purpose of the element and, if it is a widget, how to interact
with it.

The aria-roledescription property gives authors the ability to override how assistive technologies
localize and express the name of a role. Thus inappropriately using aria-roledescription may inhibit
users' ability to understand or interact with an element. Authors SHOULD limit use of aria-
roledescription to clarifying the purpose of non-interactive container roles like group or region, or to
providing a more specific description of a widget.

When using aria-roledescription, authors SHOULD also ensure that:

1. The element to which aria-roledescription is applied has a valid WAI-ARIA role or has an
implicit WAI-ARIA role semantic.

2. The value of aria-roledescription is not empty or does not contain only whitespace characters.

User agents MUST NOT expose the aria-roledescription property if any of the following conditions

aarriiaa--rroolleeddeessccrriippttiioonn property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

256 of 298 27/08/2025, 04:00

exist:

1. The element to which aria-roledescription is applied does not have a valid WAI-ARIA role or
does not have an implicit WAI-ARIA role semantic.

2. The element to which aria-roledescription is applied has an explicit or implicit WAI-ARIA role
where aria-roledescription is prohibited.

3. The value of aria-roledescription is empty or contains only whitespace characters.

Assistive technologies SHOULD use the value of aria-roledescription when presenting the role of an
element, but SHOULD NOT change other functionality based on the role of an element that has a value for
aria-roledescription. For example, an assistive technology that provides functions for navigating to the
next region or button SHOULD allow those functions to navigate to regions and buttons that have an
aria-roledescription.

The following two examples show the use of aria-roledescription to indicate that a non-interactive
container is a "slide" in a web-based presentation application.

In the previous examples, a screen reader user may hear "Quarterly Report, slide" rather than the more vague
"Quarterly Report, region" or "Quarterly Report, group."

Characteristics:

Characteristic Value

Used in Roles: All elements of the base markup

Value: string

EXAMPLE 27

<ddiivv role="region" aria-roledescription="slide" id="slide42" aria-labelledby="slide42heading"
<hh11 id="slide42heading">Quarterly Report</hh11>
<!-- remaining slide contents -->
</ddiivv>

EXAMPLE 28

<sseeccttiioonn aria-roledescription="slide" id="slide42" aria-labelledby="slide42heading">
<hh11 id="slide42heading">Quarterly Report</hh11>
<!-- remaining slide contents -->
</sseeccttiioonn>

aarriiaa--rroowwccoouunntt property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

257 of 298 27/08/2025, 04:00

Defines the total number of rows in a table, grid, or treegrid. See related aria-rowindex.

If all of the rows are present in the DOM, it is not necessary to set this attribute as the user agent can
automatically calculate the total number of rows. However, if only a portion of the rows is present in the
DOM at a given moment, this attribute is needed to provide an explicit indication of the number of rows in
the full table.

Authors MUST set the value of aria-rowcount to an integer equal to the number of rows in the full table.
If the total number of rows is unknown, authors MUST set the value of aria-rowcount to -1 to indicate
that the value should not be calculated by the user agent.

The following example shows a grid with 2000 rows, of which the first row and rows 100 through 102 are
displayed to the user.

Characteristics:

Characteristic Value

EXAMPLE 29

<ddiivv role="grid" aria-rowcount="2000">
<ddiivv role="rowgroup">

<ddiivv role="row" aria-rowindex="1">
<ssppaann role="columnheader">First Name</ssppaann>
<ssppaann role="columnheader">Last Name</ssppaann>
<ssppaann role="columnheader">Company</ssppaann>
<ssppaann role="columnheader">Phone</ssppaann>

</ddiivv>
</ddiivv>
<ddiivv role="rowgroup">

<ddiivv role="row" aria-rowindex="100">
<ssppaann role="gridcell">Fred</ssppaann>
<ssppaann role="gridcell">Jackson</ssppaann>
<ssppaann role="gridcell">Acme, Inc.</ssppaann>
<ssppaann role="gridcell">555-1234</ssppaann>

</ddiivv>
<ddiivv role="row" aria-rowindex="101">

<ssppaann role="gridcell">Sara</ssppaann>
<ssppaann role="gridcell">James</ssppaann>
<ssppaann role="gridcell">Acme, Inc.</ssppaann>
<ssppaann role="gridcell">555-1235</ssppaann>

</ddiivv>
<ddiivv role="row" aria-rowindex="102">

<ssppaann role="gridcell">Taylor</ssppaann>
<ssppaann role="gridcell">Johnson</ssppaann>
<ssppaann role="gridcell">Acme, Inc.</ssppaann>
<ssppaann role="gridcell">555-1236</ssppaann>

</ddiivv>
</ddiivv>

</ddiivv>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

258 of 298 27/08/2025, 04:00

Characteristic Value

Used in Roles: table

Inherits into Roles: grid

treegrid

Value: integer

Defines an element's row index or position with respect to the total number of rows within a table, grid, or
treegrid. See related aria-rowcount and aria-rowspan.

If all of the rows are present in the DOM, it is not necessary to set this attribute as the user agent can
automatically calculate the index of each row. However, if only a portion of the rows is present in the DOM
at a given moment, this attribute is needed to provide an explicit indication of each row's position with
respect to the full table.

Authors MUST set the value for aria-rowindex to an integer greater than or equal to 1, greater than the
aria-rowindex value of any previous rows, and less than or equal to the number of rows in the full table.
For a cell or gridcell which spans multiple rows, authors MUST set the value of aria-rowindex to the start
of the span.

Authors SHOULD place aria-rowindex on each row. Authors MAY also place aria-rowindex on all of
the children or owned elements of each row.

The following example shows a grid with 2000 rows, of which the first row and rows 100 through 102 are
displayed to the user.

aarriiaa--rroowwiinnddeexx property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

259 of 298 27/08/2025, 04:00

The following example shows the grid from the previous example with aria-rowindex also placed on all
of the owned elements of each row.

EXAMPLE 30

<ddiivv role="grid" aria-rowcount="2000">
<ddiivv role="rowgroup">

<ddiivv role="row" aria-rowindex="1">
<ssppaann role="columnheader">First Name</ssppaann>
<ssppaann role="columnheader">Last Name</ssppaann>
<ssppaann role="columnheader">Company</ssppaann>
<ssppaann role="columnheader">Phone</ssppaann>

</ddiivv>
</ddiivv>
<ddiivv role="rowgroup">

<ddiivv role="row" aria-rowindex="100">
<ssppaann role="gridcell">Fred</ssppaann>
<ssppaann role="gridcell">Jackson</ssppaann>
<ssppaann role="gridcell">Acme, Inc.</ssppaann>
<ssppaann role="gridcell">555-1234</ssppaann>

</ddiivv>
<ddiivv role="row" aria-rowindex="101">

<ssppaann role="gridcell">Sara</ssppaann>
<ssppaann role="gridcell">James</ssppaann>
<ssppaann role="gridcell">Acme, Inc.</ssppaann>
<ssppaann role="gridcell">555-1235</ssppaann>

</ddiivv>
<ddiivv role="row" aria-rowindex="102">

<ssppaann role="gridcell">Taylor</ssppaann>
<ssppaann role="gridcell">Johnson</ssppaann>
<ssppaann role="gridcell">Acme, Inc.</ssppaann>
<ssppaann role="gridcell">555-1236</ssppaann>

</ddiivv>
</ddiivv>

</ddiivv>

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

260 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Used in Roles: cell

row

Inherits into Roles: columnheader

gridcell

rowheader

Value: integer

Defines the number of rows spanned by a cell or gridcell within a table, grid, or treegrid. See related

EXAMPLE 31

<ddiivv role="grid" aria-rowcount="2000">
<ddiivv role="rowgroup">

<ddiivv role="row" aria-rowindex="1">
<ssppaann role="columnheader" aria-rowindex="1">First Name</ssppaann>
<ssppaann role="columnheader" aria-rowindex="1">Last Name</ssppaann>
<ssppaann role="columnheader" aria-rowindex="1">Company</ssppaann>
<ssppaann role="columnheader" aria-rowindex="1">Phone</ssppaann>

</ddiivv>
</ddiivv>
<ddiivv role="rowgroup">

<ddiivv role="row" aria-rowindex="100">
<ssppaann role="gridcell" aria-rowindex="100">Fred</ssppaann>
<ssppaann role="gridcell" aria-rowindex="100">Jackson</ssppaann>
<ssppaann role="gridcell" aria-rowindex="100">Acme, Inc.</ssppaann>
<ssppaann role="gridcell" aria-rowindex="100">555-1234</ssppaann>

</ddiivv>
<ddiivv role="row" aria-rowindex="101">

<ssppaann role="gridcell" aria-rowindex="101">Sara</ssppaann>
<ssppaann role="gridcell" aria-rowindex="101">James</ssppaann>
<ssppaann role="gridcell" aria-rowindex="101">Acme, Inc.</ssppaann>
<ssppaann role="gridcell" aria-rowindex="101">555-1235</ssppaann>

</ddiivv>
<ddiivv role="row" aria-rowindex="102">

<ssppaann role="gridcell" aria-rowindex="102">Taylor</ssppaann>
<ssppaann role="gridcell" aria-rowindex="102">Johnson</ssppaann>
<ssppaann role="gridcell" aria-rowindex="102">Acme, Inc.</ssppaann>
<ssppaann role="gridcell" aria-rowindex="102">555-1236</ssppaann>

</ddiivv>
</ddiivv>

</ddiivv>

aarriiaa--rroowwssppaann property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

261 of 298 27/08/2025, 04:00

aria-rowindex and aria-colspan.

This attribute is intended for cells and gridcells which are not contained in a native table. When defining the
row span of cells or gridcells in a native table, authors SHOULD use the host language's attribute instead of
aria-rowspan. If aria-rowspan is used on an element for which the host language provides an equivalent
attribute, user agents MUST ignore the value of aria-rowspan and instead expose the value of the host
language's attribute to assistive technologies.

Authors MUST set the value of aria-rowspan to an integer greater than or equal to 0 and less than the
value which would cause the cell or gridcell to overlap the next cell or gridcell in the same column. Setting
the value to 0 indicates that the cell or gridcell is to span all the remaining rows in the row group.

Characteristics:

Characteristic Value

Used in Roles: cell

Inherits into Roles: columnheader

rowheader

Value: integer

Indicates the current "selected" state of various widgets. See related aria-checked and aria-pressed.

This attribute is used with single-selection and multiple-selection widgets:

1. Single-selection containers where the currently focused item is not selected. The selection normally
follows the focus, and is managed by the user agent.

2. Multiple-selection containers. Authors SHOULD ensure that any selectable descendant of a container in
which the aria-multiselectable attribute is true specifies a value of either true or false for the
aria-selected attribute.

Any explicit assignment of aria-selected takes precedence over the implicit selection based on focus. If
no DOM element in the widget is explicitly marked as selected, assistive technologies MAY convey implicit
selection which follows the keyboard focus of the managed focus widget. If any DOM element in the widget
is explicitly marked as selected, the user agent MUST NOT convey implicit selection for the widget.

Characteristics:

Characteristic Value

Used in Roles: gridcell

aarriiaa--sseelleecctteedd state

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

262 of 298 27/08/2025, 04:00

Characteristic Value
option

row

tab

Inherits into Roles: columnheader

rowheader

treeitem

Value: true/false/undefined

Values:

Value Description

false The selectable element is not selected.

true The selectable element is selected.

undefined (default) The element is not selectable.

Defines the number of items in the current set of listitems or treeitems. Not required if all elements in the set
are present in the DOM. See related aria-posinset.

This property is marked on the members of a set, not the container element that collects the members of the
set. To orient the user by saying an element is "item X out of Y," the assistive technologies would use X equal
to the aria-posinset attribute and Y equal to the aria-setsize attribute.

If all items in a set are present in the document structure, it is not necessary to set this property, as the user
agent can automatically calculate the set size and position for each item. However, if only a portion of the set
is present in the document structure at a given moment (in order to reduce document size), this property is
needed to provide an explicit indication of set size.

Authors MUST set the value of aria-setsize to an integer equal to the number of items in the set. If the
total number of items is unknown, authors SHOULD set the value of aria-setsize to -1.

When exposing aria-setsize on a menuitem, menuitemcheckbox, or menuitemradio, authors
SHOULD set the value of aria-setsize based on the total number of items in the menu, excluding any
separators.

The following example shows items 5 through 8 in a set of 16.

aarriiaa--sseettssiizzee property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

263 of 298 27/08/2025, 04:00

The following example shows items 5 through 8 in a set whose total size is unknown.

Characteristics:

Characteristic Value

Used in Roles: article

listitem

menuitem

option

radio

row

tab

Inherits into Roles: menuitemcheckbox

menuitemradio

treeitem

Value: integer

EXAMPLE 32

<hh22 id="label_fruit"> Available Fruit </hh22>
<uull role="listbox" aria-labelledby="label_fruit">

<llii role="option" aria-setsize="16" aria-posinset="5"> apples </llii>
<llii role="option" aria-setsize="16" aria-posinset="6"> bananas </llii>
<llii role="option" aria-setsize="16" aria-posinset="7"> cantaloupes </llii>
<llii role="option" aria-setsize="16" aria-posinset="8"> dates </llii>

</uull>

EXAMPLE 33

<hh22 id="label_fruit"> Available Fruit </hh22>
<uull role="listbox" aria-labelledby="label_fruit">

<llii role="option" aria-setsize="-1" aria-posinset="5"> apples </llii>
<llii role="option" aria-setsize="-1" aria-posinset="6"> bananas </llii>
<llii role="option" aria-setsize="-1" aria-posinset="7"> cantaloupes </llii>
<llii role="option" aria-setsize="-1" aria-posinset="8"> dates </llii>

</uull>

aarriiaa--ssoorrtt property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

264 of 298 27/08/2025, 04:00

Indicates if items in a table or grid are sorted in ascending or descending order.

Authors SHOULD only apply this property to table headers or grid headers. If the property is not provided,
there is no defined sort order. For each table or grid, authors SHOULD apply aria-sort to only one header
at a time.

Characteristics:

Characteristic Value

Used in Roles: columnheader

rowheader

Value: token

Values:

Value Description

ascending Items are sorted in ascending order by this column.

descending Items are sorted in descending order by this column.

none (default) There is no defined sort applied to the column.

other A sort algorithm other than ascending or descending has
been applied.

Defines the maximum allowed value for a range widget.

Authors MUST ensure the value of aria-valuemax is greater than or equal to the value of aria-
valuemin. If the aria-valuenow has a known maximum and minimum, the author SHOULD provide
properties for aria-valuemax and aria-valuemin.

NOTE

A range widget starts with a given value, which can be increased until reaching the maximum value,
defined by this property. Declaring the minimum and maximum values allows assistive technology to
convey the size of the range to users.

Characteristics:

Characteristic Value

Related Concepts: <range> element max attribute in [HTML]

aarriiaa--vvaalluueemmaaxx property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

265 of 298 27/08/2025, 04:00

Characteristic Value

Used in Roles: range

scrollbar

separator

slider

spinbutton

Inherits into Roles: meter

progressbar

scrollbar

slider

spinbutton

Value: number

Defines the minimum allowed value for a range widget.

Authors MUST ensure the value of aria-valuemin is less than or equal to the value of aria-valuemax. If
the aria-valuenow has a known maximum and minimum, the author SHOULD provide properties for
aria-valuemax and aria-valuemin.

NOTE

A range widget starts with a given value, which can be decreased until reaching the minimum value,
defined by this property. Declaring the minimum and maximum values allows assistive technology to
convey the size of the range to users.

Characteristics:

Characteristic Value

Related Concepts: <range> element min attribute in [HTML]

Used in Roles: range

scrollbar

separator

slider

aarriiaa--vvaalluueemmiinn property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

266 of 298 27/08/2025, 04:00

Characteristic Value
spinbutton

Inherits into Roles: meter

progressbar

scrollbar

slider

spinbutton

Value: number

Defines the current value for a range widget. See related aria-valuetext.

This property is used, for example, on a range widget such as a slider or progress bar.

If the current value is not known (for example, an indeterminate progress bar), the author SHOULD NOT set
the aria-valuenow attribute. If the aria-valuenow attribute is absent, no information is implied about the
current value. If the aria-valuenow has a known maximum and minimum, the author SHOULD provide
properties for aria-valuemax and aria-valuemin.

The value of aria-valuenow is a decimal number. If the range is a set of numeric values, then aria-
valuenow is one of those values. For example, if the range is [0, 1], a valid aria-valuenow is 0.5. A value
outside the range, such as -2.5 or 1.1, is invalid.

For progressbar elements and scrollbar elements, assistive technologies SHOULD render the value to
users as a percent, calculated as a position on the range from aria-valuemin to aria-valuemax if both
are defined, otherwise the actual value with a percent indicator. For elements with role slider and
spinbutton, assistive technologies SHOULD render the actual value to users.

When the rendered value cannot be accurately represented as a number, authors SHOULD use the aria-
valuetext attribute in conjunction with aria-valuenow to provide a user-friendly representation of the
range's current value. For example, a slider may have rendered values of small, medium, and large. In this
case, the values of aria-valuetext would be one of the strings: small, medium, or large.

NOTE

If aria-valuetext is specified, assistive technologies render that instead of the value of aria-
valuenow.

aarriiaa--vvaalluueennooww property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

267 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Related Concepts: <range> element value attribute in [HTML]

Used in Roles: meter

range

scrollbar

separator

slider

spinbutton

Inherits into Roles: meter

progressbar

scrollbar

slider

spinbutton

Value: number

Defines the human readable text alternative of aria-valuenow for a range widget.

This property is used, for example, on a range widget such as a slider or progress bar.

If the aria-valuetext attribute is set, authors SHOULD also set the aria-valuenow attribute, unless that
value is unknown (for example, on an indeterminate progressbar).

Authors SHOULD only set the aria-valuetext attribute when the rendered value cannot be meaningfully
represented as a number. For example, a slider may have rendered values of small, medium, and large. In
this case, the values of aria-valuenow could range from 1 through 3, which indicate the position of each
value in the value space, but the aria-valuetext would be one of the strings: small, medium, or large.
If the aria-valuetext attribute is absent, the assistive technologies will rely solely on the aria-
valuenow attribute for the current value.

If aria-valuetext is specified, assistive technologies SHOULD render that value instead of the value of
aria-valuenow.

aarriiaa--vvaalluueetteexxtt property

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

268 of 298 27/08/2025, 04:00

Characteristics:

Characteristic Value

Used in Roles: range

separator

spinbutton

Inherits into Roles: meter

progressbar

scrollbar

slider

spinbutton

Value: string

The accessibility tree and the DOM tree are parallel structures. The accessibility tree includes the user
interface objects of the user agent and the objects of the document. Accessible objects are created in the
accessibility tree for every DOM element that should be exposed to an assistive technology, either because it
may fire an accessibility event or because it has a property, relationship or feature which needs to be exposed.

The following elements are not exposed via the accessibility API and user agents MUST NOT include them
in the accessibility tree:

• Elements, including their descendent elements, that have host language semantics specifying that the
element is not displayed, such as CSS display:none, visibility:hidden, or the HTML hidden
attribute.

• Elements with none or presentation as the first role in the role attribute. However, their exclusion is
conditional. In addition, the element's descendants and text content are generally included. These
exceptions and conditions are documented in the presentation (role) section.

If not already excluded from the accessibility tree per the above rules, user agents SHOULD NOT include
the following elements in the accessibility tree:

7. Accessibility Tree

7.1 Excluding Elements from the Accessibility Tree

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

269 of 298 27/08/2025, 04:00

• Elements, including their descendants, that have aria-hidden set to true. In other words, aria-
hidden="true" on a parent overrides aria-hidden="false" on descendants.

• Any descendants of elements that have the characteristic "Children Presentational: True" unless the
descendant is not allowed to be presentational because it meets one of the conditions for exception
described in Presentational Roles Conflict Resolution. However, the text content of any excluded
descendants is included.

Elements with the following roles have the characteristic "Children Presentational: True":

◦ button

◦ checkbox

◦ img

◦ menuitemcheckbox

◦ menuitemradio

◦ meter

◦ option

◦ progressbar

◦ radio

◦ scrollbar

◦ separator

◦ slider

◦ switch

◦ tab

If not excluded from or marked as hidden in the accessibility tree per the rules above in Excluding Elements
in the Accessibility Tree, user agents MUST provide an accessible object in the accessibility tree for DOM
elements that meet any of the following criteria:

• Elements that are not hidden and may fire an accessibility API event, including:

◦ Elements that are currently focused, even if the element or one of its ancestor elements has its
aria-hidden attribute set to true.

7.2 Including Elements in the Accessibility Tree

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

270 of 298 27/08/2025, 04:00

◦ Elements that are a valid target of an aria-activedescendant attribute.

• Elements that have an explicit role or a global WAI-ARIA attribute and do not have aria-hidden set
to true. (See Excluding Elements in the Accessibility Tree for additional guidance on aria-hidden.)

• Elements that are not hidden and have an ID that is referenced by another element via a WAI-ARIA
property.

NOTE

Text equivalents for hidden referenced objects may still be used in the name and description
computation even when not included in the accessibility tree.

The roles, state, and properties defined in this specification do not form a complete web language or format.
They are intended to be used in the context of a host language. This section discusses how host languages are
to implement WAI-ARIA, to ensure that the markup specified here will integrate smoothly and effectively
with the host language markup.

Although markup languages look alike superficially, they do not share language definition infrastructure. To
accommodate differences in language-building approaches, the requirements are both general and
modularization-specific. While allowing for differences in how the specifications are written, the intent is to
maintain consistency in how the WAI-ARIA information looks to authors and how it is manipulated in the
DOM by scripts.

WAI-ARIA roles, states, and properties are implemented as attributes of elements. Roles are applied by
placing their names among the tokens appearing in the value of a host-language-provided role attribute.
States and properties each get their own attribute, with values as defined for each particular state or property
in this specification. The name of the attribute is the aria-prefixed name of the state or property.

An implementing host language will provide an attribute with the following characteristics:

• The attribute name MUST be role;

• The attribute value MUST allow a token list as the value;

• The appearance of the name literal of any concrete WAI-ARIA role as one of these tokens MUST NOT

8. Implementation in Host Languages

8.1 Role Attribute

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

271 of 298 27/08/2025, 04:00

https://www.w3.org/TR/accname-1.2/#mapping_additional_nd
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd
https://www.w3.org/TR/accname-1.2/#mapping_additional_nd

in and of itself make the attribute value illegal in the host-language syntax; and

• The first name literal of a non-abstract WAI-ARIA role in the list of tokens in the role attribute defines
the role according to which the user agent MUST process the element. User Agent processing for roles
is defined in the Core Accessibility API Mappings [CORE-AAM-1.2].

An implementing host language MUST allow attributes with the following characteristics:

• The attribute name is the name of any state or property identified in the Supported States and Properties
section, such as aria-busy, aria-selected, aria-activedescendant, aria-valuetext;

• The syntax does NOT prevent the attribute from appearing anywhere that it is applicable, as specified in
this specification;

• When these attributes appear in a document instance, the attributes will be processed as defined in this
specification.

Host languages that support XML Namespaces [XML-NAMES] MAY require that WAI-ARIA attributes be
used with a namespace. In this case, the namespace for WAI-ARIA state and property attributes MUST be
http://www.w3.org/ns/wai-aria/. To use WAI-ARIA in host languages that do not explicitly describe
support for it, authors SHOULD use this namespace as well, if the host language supports namespaces and
there is expectation that user agents will recognize the WAI-ARIA namespace. The namespace prefix is not
defined by this specification but generally is expected to be "aria".

NOTE

The WAI-ARIA state and property attributes have a naming convention such that they all begin with the
string "aria-". This is not a namespace prefix, it is a part of the state or property name. Therefore, when
using WAI-ARIA states and properties with namespace prefixes, the complete attribute name will be like
"aria:aria-foo".

Some host languages do not use namespaces with WAI-ARIA state and property attributes, either because the
host language does not support namespaces or because the designers wish to incorporate WAI-ARIA into the
core feature set. In these host languages, the namespace name for these attributes has no value. The names of
these attributes do not have a prefix offset by a colon; in the terms of namespaces they are unprefixed
attribute names. The ECMAScript binding of the DOM interface getAttributeNS for example, treats an
empty string ("") as representing this condition, so that both getAttribute("aria-busy") and
getAttributeNS("", "aria-busy") access the same aria-busy attribute in the DOM.

8.2 State and Property Attributes

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

272 of 298 27/08/2025, 04:00

https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/2006/REC-xml-names-20060816/
https://www.w3.org/TR/2006/REC-xml-names-20060816/
https://www.w3.org/TR/2006/REC-xml-names-20060816/
https://www.w3.org/TR/2006/REC-xml-names-20060816/

NOTE

According to the requirements of this section, some user agents recognize WAI-ARIA state and property
attributes with namespaces, some without namespaces, and some might recognize both. Authors are
advised to be aware of which form is supported for the host language they are using. Unless the host
language and supporting user agents explicitly indicate that the namespace is required, authors are
advised to use the attribute without namespaces. Even user agents that support namespaces generally do
not publish namespaced WAI-ARIA states and properties to accessibility APIs. In particular, current
implementations of HTML, including XHTML, do not support this namespace.

An implementing host language MUST provide support for the author to make all interactive elements
focusable, that is, any renderable or event-receiving elements. An implementing host language MUST
provide a facility to allow web authors to define whether these focusable, interactive elements appear in the
default tab navigation order. The tabindex attribute in HTML is an example of one implementation.

WAI-ARIA is designed to provide semantic information about objects when host languages lack native
semantics for the object. WAI-ARIA is designed, however, to provide additional semantics for many host
languages. Furthermore, host languages over time can evolve and provide new native features that
correspond to WAI-ARIA features. Therefore, there are many situations in which WAI-ARIA semantics are
redundant with host language semantics.

These host language features can be viewed as having "implicit WAI-ARIA semantics". User agent
processing of features with implicit WAI-ARIA semantics would be similar to the processing for the WAI-
ARIA feature. The processing might not be identical because of lexical differences between the host
language feature and the WAI-ARIA feature, but generally the user agent would expose the same information
to the accessibility API. Features with implicit WAI-ARIA semantics satisfy WAI-ARIA structural
requirements such as required owned elements, required states and properties, etc. and do not require explicit
WAI-ARIA semantics to be provided. On elements with implicit WAI-ARIA roles, authors can also use WAI-
ARIA states and properties supported by those roles without requiring explicit indication of the WAI-ARIA
role.

For example, if an element with the functionality already exists, such as a checkbox or radio button, use the
native semantics of the host language. WAI-ARIA markup is only intended to be used to enhance the native

8.3 Focus Navigation

8.4 Implicit WAI-ARIA Semantics

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

273 of 298 27/08/2025, 04:00

semantics (e.g., indicating that the element is required with aria-required), or to change the semantics to
a different purpose from the standard functionality of the element.

Implicit WAI-ARIA semantics affect the conflict resolution procedures in the following section, Conflicts
with Host Language Semantics. Therefore, implicit WAI-ARIA semantics need to be defined in a normative
specification, such as the host language specification or the Core Accessibility API Mappings.

WAI-ARIA roles, states, and properties are intended to add semantic information when native host language
elements with these semantics are not available, and are generally used on elements that have no native
semantics of their own. They can also be used on elements that have similar but non-identical semantics (for
example, a nested list could be used to represent a tree structure). This method can be part of a fallback
strategy for older browsers that have no WAI-ARIA implementation, or because native presentation of the
repurposed element reduces the amount of style and/or script needed. Except for the cases outlined below,
user agents MUST always use the WAI-ARIA semantics to define how it exposes the element to accessibility
APIs, rather than using the host language semantics.

In addition to these normal situations in which WAI-ARIA is expected to override native semantics, there are
elements that are inappropriate to override with WAI-ARIA. This could be because identical host language
semantics exist, so WAI-ARIA is not needed, or because semantics from WAI-ARIA directly conflict with
host language semantics. When a feature in the host language with identical role semantics and values is
available, and the author has no compelling reason to avoid using the host language feature, authors
SHOULD use the host language features rather than repurpose other elements with WAI-ARIA.

Host languages can have features that have implicit WAI-ARIA semantics corresponding to roles. When a
WAI-ARIA role is provided, user agents MUST use the semantic of the WAI-ARIA role for processing, not
the native semantic, unless the role requires WAI-ARIA states and properties whose attributes are explicitly
forbidden on the native element by the host language. Values for roles do not conflict in the same way as
values for states and properties (for example, the HTML 'checked' attribute and the 'aria-checked' attribute
could have conflicting values), and authors are expected to have valid reason to provide a WAI-ARIA role
even on elements that would not normally be repurposed.

When WAI-ARIA states and properties correspond to host language features that have the same implicit
WAI-ARIA semantic, it can be particularly problematic to use the WAI-ARIA feature. If the WAI-ARIA
feature and the host language feature are both provided but their values are not kept in sync, user agents and
assistive technologies cannot know which value to use. Therefore, to prevent providing conflicting states and
properties to assistive technologies, host languages MUST explicitly declare where the use of WAI-ARIA
attributes on each host language element conflicts with native attributes for that element. When a host
language declares a WAI-ARIA attribute to be in direct semantic conflict with a native attribute for a given

8.5 Conflicts with Host Language Semantics

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

274 of 298 27/08/2025, 04:00

https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/

element, user agents MUST ignore the WAI-ARIA attribute and instead use the host language attribute with
the same implicit semantic.

Host languages MAY document features that cannot be overridden with WAI-ARIA (these are called "strong
native semantics"). These can be features that have implicit WAI-ARIA semantics, as well as features where
the processing would be uncertain if the semantics were changed with WAI-ARIA. Conformance checkers
MAY signal an error or warning when a WAI-ARIA role is used on elements with strong native semantics,
but as described above, user agents MUST still use the value of the semantic of the WAI-ARIA role when
exposing the element to accessibility APIs unless the native host language semantic is permanently
presentational.

The opportunity for host languages to create exceptions to the WAI-ARIA override of native features is
meant to avoid potential author errors or problems with intrinsic processing of host language features. Author
errors could happen when a host language and WAI-ARIA provide similar but not identical features, where it
might not be clear how changing one but not the other affects the accessibility API. Intrinsic processing
refers to the way a feature is processed, beyond simple rendering and exposure to the Accessibility API, that
cannot reasonably be changed in response to an ARIA feature, and would lead to unpredictable results were
ARIA allowed. In these situations, there is good reason for host languages to limit the scope of WAI-ARIA.
However, this provision does not give blanket permission for host languages to forbid the use of WAI-ARIA
simply by documenting, feature by feature, that it may not be used. Host languages should create restrictions
on the use of ARIA only when it is critical to effective processing of content.

Certain ARIA features are critical to building a complete model in the accessibility API. Such features are
not expected to conflict with native host language semantics (though they may complement them). Therefore,
host languages MUST NOT declare strong native semantics that prevent use of the following ARIA features:

• aria-describedby

• aria-label

• aria-labelledby

State and property attributes are included in host languages, and therefore syntax for representation of their
value types is governed by the host language. For each of the value types defined in Value, an appropriate
value type from the host language is used. Recommended correspondences between WAI-ARIA value types
and various host language value types are listed in Mapping WAI-ARIA Value types to languages. This is a
non-normative mapping in order to accommodate new host languages supporting WAI-ARIA.

The list value types—ID reference list and token list—allow more than one value of the given type to be
provided. The values are separated by delimiter characters recognized by the host language for list attributes,

8.6 State and Property Attribute Processing

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

275 of 298 27/08/2025, 04:00

such as space characters, commas, etc. Some languages may require a specific, single delimiter, while others
may allow various delimiters.

Global states and properties are supported on any element in the host language. However, authors MUST
only use non-global states and properties on elements with a role supporting the state or property; either
defined as an explicit WAI-ARIA role, or as defined by the host language implicit WAI-ARIA semantic
matching an appropriate WAI-ARIA role. When a role attribute is added to an element, the semantics and
behavior of the element, including support for WAI-ARIA states and properties, are augmented or overridden
by the role behavior. User agents MUST ignore non-global states and properties used on an element without a
role supporting the state or property; either defined as an explicit WAI-ARIA role, or as defined by the host
language WAI-ARIA semantic matching an appropriate WAI-ARIA role. For example, the aria-
valuetext attribute may be used on a progressbar.

WAI-ARIA roles have associated states and properties that are qualified as "supported" or "required". An
example of a property supported by the combobox role is aria-autocomplete. The property is designated
"supported" in this case because a given combobox might or might not implement auto completion. In
contrast, the combobox role requires the aria-expanded state in order to indicate that it is expandable.
Comboboxes have a controlled popup element, such as a listbox, that is either open or closed. If the
listbox is open, the combobox is in its expanded state; otherwise it is collapsed.

When WAI-ARIA roles are used, supported states and properties that are not present in the DOM are treated
according to their default value. Keeping with the combobox example, a missing aria-autocomplete
attribute is equivalent to aria-autocomplete="none", meaning the combobox does not offer auto
completion.

However, required states and properties that are absent are an author error. Missing required states and
properties are treated as if they were present and have an implicit neutral value that is not necessarily their
default value. For example, the default value of aria-expanded is undefined, meaning neither
expandable nor collapsible. But that does not apply to the case of a combobox. In this case, aria-expanded
is needed to convey the expandable/collapsible nature of the combobox. Thus, the implicit value of aria-
expanded for the combobox role is false, meaning expandable (and currently collapsed). The
characteristics table associated with each WAI-ARIA role has an "Implicit Value for Role" entry that
specifies the value of a state or property to use in the context of that role when the state or property is
missing.

Elements that have implicit WAI-ARIA semantics support the full set of WAI-ARIA states and properties
supported by the corresponding role. Therefore, authors MAY omit the role when setting states and
properties. The role is only needed when the implicit WAI-ARIA role of the element needs to be changed.

Sometimes states and properties are present in the DOM but have a zero-length string ("") as their value.
Authors MAY specify a zero-length string ("") for any supported (but not required) state or property. User
agents SHOULD treat state and property attributes with a value of "" the same as they treat an absent
attribute. For supported states and properties, this corresponds to the default value, but if it is a required

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

276 of 298 27/08/2025, 04:00

attribute, it signals an author error, and the implicit value for the role is used.

User agents SHOULD ignore ID references that do not match the ID of another element in the same
document.

It is the web author's responsibility to ensure that IDs are unique. If more than one element has the same ID,
the user agent SHOULD use the first element found with the given ID. The behavior will be the same as
getElementById.

If the same element is specified multiple times in a single WAI-ARIA relation, user agents SHOULD return
multiple pointers to the same element.

aria-activedescendant is defined as referencing only a single ID reference. Any aria-
activedescendant value that does not match an existing ID reference exactly is an author error and will
not match any element in the DOM.

NOTE

This section might be removed in a future version.

Support for attribute selectors MUST include WAI-ARIA attributes. For example, .fooMenuItem[aria-
haspopup="true"] would select all elements with class fooMenuItem, and WAI-ARIA property aria-
haspopup with value of true. The presentation MUST be updated for dynamic changes to WAI-ARIA
attributes. This allows authors to match styling with WAI-ARIA semantics.

User agents are expected to perform validation of WAI-ARIA roles.

8.6.1 ID Reference Error Processing

8.7 CSS Selectors

9. Handling Author Errors

9.1 Roles

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

277 of 298 27/08/2025, 04:00

As stated in the Definition of Roles section, it is considered an authoring error to use abstract roles in content.
User agents MUST NOT map abstract roles via the standard role mechanism of the accessibility API.

If the role attribute contains no tokens matching the name of a non-abstract WAI-ARIA role, the user agent
MUST treat the element as if no role had been provided. For example, <table role="foo"> should be
exposed in the same way as <table> and <input type="text" role="structure"> in the same way
as <input type="text">.

In general, user agents do not do much validation of WAI-ARIA properties. User agents MAY do some minor
validation on request, such as making sure valid IDs are specified for WAI-ARIA relations, and enforcing
things like aria-posinset being within 1 and aria-setsize, inclusive. User agents are not responsible
for logical validation, such as the following:

1. Circular references created by relations, such as specifying that two elements own each other.

2. Correct usage with regard to DOM tree structure, such as an element being owned by more than one
other element.

3. Elements with WAI-ARIA roles correctly implement the behavior of the specified role. For example,
user agents do not verify that an element with a role of checkbox actually behaves like a checkbox.

4. Elements that do not correctly observe required child / parent role relationships or that appear elsewhere
than in their required parent.

5. Determining whether aria-activedescendant actually points to an owned element of the container
widget.

6. Determining implicit values of aria-setsize and aria-posinset when they are specified on some
but not all the elements of the set.

If the author specifies a non-numeric value for a decimal or integer value type, the user agent SHOULD do
the following:

• When asked for the string version of the property, return the string if specified by the author.

• When asked for the numeric version:

◦ Follow the guidance in the Fallback values for missing required attributes table below, if
applicable.

◦ Otherwise, return a fallback value of 0.0 for decimal value types and 0 for integer value types.

If a WAI-ARIA property contains an unknown or disallowed value, the user agent SHOULD expose to
platform accessibility APIs as follows:

9.2 States and Properties

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

278 of 298 27/08/2025, 04:00

• When exposing as a platform accessibility API attribute, expose the unknown value — do not vet it
against possible values.

• When exposing as a platform API Boolean state:

◦ For values of "" (empty string), "undefined" or no attribute present:

▪ Follow the guidance in the Fallback values for missing required attributes table below, if
applicable.

▪ Otherwise, treat as false.

◦ Treat any other value as true.

• Otherwise, ignore the value and treat the property as not present.

NOTE

In UIA, the user agent might leave the corresponding property set to "unsupported."

User agents MUST NOT expose WAI-ARIA attributes that reference unresolved IDs. For example:

• When the state or property has only one ID reference that cannot be resolved, treat as if the state or
property is not present.

• When the state or property has a list of ID references, ignore any that can't be resolved. If none in the list
can be resolved, treat as if the state or property is not present.

User Agents MUST NOT expose aria-roledescription when:

• The element it is applied to has an invalid WAI-ARIA role, or

• The element does not have an implicit WAI-ARIA role

If a required WAI-ARIA attribute for a given role is missing, user agents SHOULD process the attribute as if
the values given in the following table were provided.

Fallback values for missing required attributes

WAI-ARIA role Required
Attribute

Fallback value

checkbox aria-
checked

false

combobox aria-
controls

no mapping

combobox aria-
expanded

false

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

279 of 298 27/08/2025, 04:00

WAI-ARIA role Required
Attribute

Fallback value

heading aria-
level

2

menuitemcheckbox aria-
checked

false

menuitemradio aria-
checked

false

radio aria-
checked

false

scrollbar aria-
controls

no mapping

scrollbar aria-
valuenow

If missing or not a number,(aria-valuemax - aria-
valuemin) / 2. If present but less than aria-valuemin, the
value of aria-valuemin. If present but greater than aria-
valuemax, the value of aria-valuemax.

separator (if
focusable)

aria-
valuenow

If missing or not a number,(aria-valuemax - aria-
valuemin) / 2. If present but less than aria-valuemin, the
value of aria-valuemin. If present but greater than aria-
valuemax, the value of aria-valuemax.

slider aria-
valuenow

If missing or not a number,(aria-valuemax - aria-
valuemin) / 2. If present but less than aria-valuemin, the
value of aria-valuemin. If present but greater than aria-
valuemax, the value of aria-valuemax.

switch aria-
checked

false

meter aria-
valuenow

A value matching the implicit or explicitly set aria-valuemin.

NOTE

Implicit Values for non-required states and properties appear in the characteristics table for each role.
These are not considered fallback values so are not included here.

Conforming user agents MUST implement the following IDL interface.

10. IDL Interface

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

280 of 298 27/08/2025, 04:00

10.1 Interface Mixin AARRIIAAMMiixxiinn

WebIDL

interface mixin AARRIIAAMMiixxiinn {
attribute DOMString? role;

attribute DOMString? ariaAtomic;
attribute DOMString? ariaAutoComplete;
attribute DOMString? ariaBusy;
attribute DOMString? ariaChecked;
attribute DOMString? ariaColCount;
attribute DOMString? ariaColIndex;

attribute DOMString? ariaColSpan;

attribute DOMString? ariaCurrent;

attribute DOMString? ariaDisabled;

attribute DOMString? ariaExpanded;

attribute DOMString? ariaHasPopup;
attribute DOMString? ariaHidden;
attribute DOMString? ariaInvalid;
attribute DOMString? ariaKeyShortcuts;
attribute DOMString? ariaLabel;

attribute DOMString? ariaLevel;
attribute DOMString? ariaLive;
attribute DOMString? ariaModal;
attribute DOMString? ariaMultiLine;
attribute DOMString? ariaMultiSelectable;
attribute DOMString? ariaOrientation;

attribute DOMString? ariaPlaceholder;
attribute DOMString? ariaPosInSet;
attribute DOMString? ariaPressed;
attribute DOMString? ariaReadOnly;

attribute DOMString? ariaRequired;
attribute DOMString? ariaRoleDescription;
attribute DOMString? ariaRowCount;
attribute DOMString? ariaRowIndex;

attribute DOMString? ariaRowSpan;
attribute DOMString? ariaSelected;
attribute DOMString? ariaSetSize;
attribute DOMString? ariaSort;
attribute DOMString? ariaValueMax;
attribute DOMString? ariaValueMin;
attribute DOMString? ariaValueNow;

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

281 of 298 27/08/2025, 04:00

Interfaces that include ARIAMixin must provide the following algorithms:

• AARRIIAAMMiixxiinn getter steps, which take the host interface instance, IDL attribute name, and content
attribute name, and must return a string value; and

• AARRIIAAMMiixxiinn setter steps, which take the host interface instance, IDL attribute name, content attribute
name, and string value, and must return nothing.

For every IDL attribute defined in ARIAMixin, on getting, it must perform the following steps:

1. Let be the ARIA content attribute determined by looking up in the ARIA
Attribute Correspondence table.

2. Return the result of running the ARIAMixin getter steps, given this, , and .

Similarly, on setting, it must perform the following steps:

1. Let be the ARIA content attribute determined by looking up in the ARIA
Attribute Correspondence table.

2. Run the ARIAMixin setter steps, given this, , , and the given value.

NOTE

This very general framework is motivated by the desire for different host interfaces, such as Element
and ElementInternals, to give these IDL attributes different behaviors. The alternative is requiring
each host interface to duplicate the IDL attributes independently, so that they can specify independent
behaviors, but that comes with a high risk of them getting out of sync.

The following table provides a correspondence between IDL attribute names and content attribute names, for
use by ARIAMixin.

IDL Attribute Reflected ARIA Content Attribute

rroollee role

aarriiaaAAttoommiicc aria-atomic

aarriiaaAAuuttooCCoommpplleettee aria-autocomplete

attribute DOMString? ariaValueText;
};

idlAttribute

contentAttribute idlAttribute

idlAttribute contentAttribute

contentAttribute idlAttribute

idlAttribute contentAttribute

10.2 ARIA Attribute Correspondence

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

282 of 298 27/08/2025, 04:00

aarriiaaBBuussyy aria-busy

aarriiaaCChheecckkeedd aria-checked

aarriiaaCCoollCCoouunntt aria-colcount

aarriiaaCCoollIInnddeexx aria-colindex

aarriiaaCCoollSSppaann aria-colspan

aarriiaaCCuurrrreenntt aria-current

aarriiaaDDiissaabblleedd aria-disabled

aarriiaaEExxppaannddeedd aria-expanded

aarriiaaHHaassPPooppuupp aria-haspopup

aarriiaaHHiiddddeenn aria-hidden

aarriiaaIInnvvaalliidd aria-invalid

aarriiaaKKeeyySShhoorrttccuuttss aria-keyshortcuts

aarriiaaLLaabbeell aria-label

aarriiaaLLeevveell aria-level

aarriiaaLLiivvee aria-live

aarriiaaMMooddaall aria-modal

aarriiaaMMuullttiiLLiinnee aria-multiline

aarriiaaMMuullttiiSSeelleeccttaabbllee aria-multiselectable

aarriiaaOOrriieennttaattiioonn aria-orientation

aarriiaaPPllaacceehhoollddeerr aria-placeholder

aarriiaaPPoossIInnSSeett aria-posinset

aarriiaaPPrreesssseedd aria-pressed

aarriiaaRReeaaddOOnnllyy aria-readonly

aarriiaaRReeqquuiirreedd aria-required

aarriiaaRRoolleeDDeessccrriippttiioonn aria-roledescription

aarriiaaRRoowwCCoouunntt aria-rowcount

aarriiaaRRoowwIInnddeexx aria-rowindex

aarriiaaRRoowwSSppaann aria-rowspan

aarriiaaSSeelleecctteedd aria-selected

aarriiaaSSeettSSiizzee aria-setsize

aarriiaaSSoorrtt aria-sort

aarriiaaVVaalluueeMMaaxx aria-valuemax

aarriiaaVVaalluueeMMiinn aria-valuemin

aarriiaaVVaalluueeNNooww aria-valuenow

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

283 of 298 27/08/2025, 04:00

aarriiaaVVaalluueeTTeexxtt aria-valuetext

NOTE

Note: Attributes aria-dropeffect and aria-grabbed were deprecated in ARIA 1.1 and do not have
corresponding IDL attributes.

This section is non-normative.

Though specification authors may make exceptions to this pattern, the following rules were used to
disambiguate names and case of the IDL attributes listed above.

• Any attribute name referencing concepts that are combinations of two or more words (such as
"described by") becomes a camel-cased IDL attribute capitalizing each word boundary. For example,
aria-describedby becomes ariaDescribedBy with both the D and B capitalized.

• Likewise, any attribute name referencing concepts that can be hyphenated (such as "multi-selectable")
becomes a camel-cased IDL attribute capitalizing each hyphenation boundary. For example, the only
valid spelling for "multi-selectable" is hyphenated, so aria-multiselectable becomes
ariaMultiSelectable with both the M and S capitalized.

• When trusted dictionary sources list both hyphenated or non-hyphenated spellings (e.g. "multi-line" and
"multiline" are both valid spellings) use the hyphenated version and apply the hyphenation rule above.
For example, aria-multiline becomes ariaMultiLine with both the M and L capitalized.

• If all trusted dictionary sources list a single spelling of a compound word with no spaces or hyphens,
only the first letter of the term is capitalized. For example, neither “place-holder” nor “place holder” are
considered valid spellings of the term “placeholder,” so aria-placeholder becomes
ariaPlaceholder with only the P capitalized.

• There are currently no acronym-based ARIA attributes, but if future attributes include acronym usage,
attempt to match existing DOM conventions (e.g. ID becomes Id).

This section is non-normative.

Any notes or exceptions for specific attribute names will be listed here.

10.2.1 Disambiguation Pattern

10.2.2 IDL Attribute Name Notes or Exceptions

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

284 of 298 27/08/2025, 04:00

• ariaPosInSet: The aria-posinset attribute refers to an item's position in a set (two words: "in set")
rather than the "inset" of an item from the beginning of the collection. Therefore the IDL attribute name
is ariaPosInSet with the P, I, and second S capitalized, not ariaPosInset.

User agents MUST include ARIAMixin on Element:

For Element:

• The ARIAMixin getter steps given , , and are to return the result of
the getter algorithm for reflecting on .

• The ARIAMixin setter steps given , , , and are to perform the
setter algorithm for reflecting on , given .

NOTE

In practice, this means that, e.g., the role IDL on Element reflects the role content attribute; the
ariaValueMin IDL attribute reflects the aria-valuemin content attribute; etc.

This section is non-normative.

The primary purpose of ARIA IDL attribute reflection is to ease JavaScript-based manipulation of values.
The following examples demonstrate its usage.

10.3 ARIAMixin Mixed in to Element

WebIDL

EElleemmeenntt includes AARRIIAAMMiixxiinn;

element idlAttribute contentAttribute
idlAttribute contentAttribute element

element idlAttribute contentAttribute value
idlAttribute contentAttribute element value

10.4 Example IDL Attribute Usage

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

285 of 298 27/08/2025, 04:00

https://html.spec.whatwg.org/multipage/common-dom-interfaces.html#reflect
https://html.spec.whatwg.org/multipage/common-dom-interfaces.html#reflect
https://html.spec.whatwg.org/multipage/common-dom-interfaces.html#reflect
https://html.spec.whatwg.org/multipage/common-dom-interfaces.html#reflect

This section is non-normative.

This specification introduces no new security considerations.

In accordance with Web Platform Design Principles, this specification provides no programatic interface to
determine if information is being used by Assistive Technologies. However, this specificaton does allow an
author to present different information to users of Assistive Technologies from the information available to
users who do not use Assistive Technologies. This is possible using many features of the ARIA specification,
just as this is possible using many other parts of the web technology stack. This content disparity could be
abused to perform active fingerprinting of users of Assistive Technologies.

EXAMPLE 34

<ddiivv id="inaccessibleButton">
<!-- Use semantic markup instead. This is just a retrofit example. -->

</ddiivv>

// Get a reference to the element.
let el = document.getElementById('inaccessibleButton');
el.tabIndex = 0; // Make it focusable.

// Set the role and label.
el.role = "button";
el.ariaLabel = "Edit";

// Get the role and label.
el.role; // Returns "button"
el.ariaLabel; // Returns "Edit"

// These are interchangeable with the more verbose setAttribute and getAttribute methods.
el.setAttribute("role", "button");
el.setAttribute("aria-label", "Edit");
el.getAttribute("role"); // Returns "button"
el.getAttribute("aria-label"); // Returns "Edit"

// Changes via either interface are reflected by the other.
el.setAttribute("aria-label", "Delete");
el.ariaLabel; // Returns "Delete"
el.ariaLabel = "Publish";
el.getAttribute("aria-label"); // Returns "Publish"

11. Privacy and Security Considerations

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

286 of 298 27/08/2025, 04:00

https://w3ctag.github.io/design-principles/#do-not-expose-use-of-assistive-tech
https://w3ctag.github.io/design-principles/#do-not-expose-use-of-assistive-tech
https://www.w3.org/TR/fingerprinting-guidance/#active-0
https://www.w3.org/TR/fingerprinting-guidance/#active-0

This section is non-normative.

NOTE

The HTML column of the table below is advisory. Guidance on use of WAI-ARIA state and properties in
HTML is provided in Allowed ARIA roles, states and properties ([HTML-ARIA].

NOTE

The suggested mappings for true/false values in HTML use Keyword and enumerated attributes with
allowed values of true and false, instead of using the HTML boolean value type.

The table below provides recommended mappings between WAI-ARIA state and property types and attribute
types from [HTML], XML Schema Datatypes [XMLSCHEMA11-2], [SVG2], and SGML.

Languages not listed below might have appropriate value types defined in the language. If they do not, we
recommend XML Schema Datatypes for general purpose XML languages. Documents using DTDs instead of
schemas will not be able to validate automatically and require additional processing on WAI-ARIA attributes.

WAI-ARIA
type

HTML XML Schema

true/false Keyword and enumerated attributes with
allowed values of "true" and "false"

boolean

true/false/
undefined

Keyword and enumerated attributes with
allowed values of true, false, and
undefined

NMTOKEN with an enumeration constraint
allowing values of true, false, and
undefined

tristate Keyword and enumerated attributes with
allowed values of "true", "false", and
"mixed"

NMTOKEN with an enumeration constraint
allowing values of "true", "false", and
"mixed"

number Floating-point numbers decimal

integer Non-negative integer integer

token Keyword and enumerated attributes NMTOKEN with an enumeration constraint
allowing values listed in the state or property
definition

token list Space-separated tokens NMTOKENS with an enumeration constraint
allowing values listed in the state or property
definition

A. Mapping WAI-ARIA Value types to languages

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

287 of 298 27/08/2025, 04:00

https://www.w3.org/TR/html-aria/#document-conformance-requirements-for-use-of-aria-attributes-in-html
https://www.w3.org/TR/html-aria/#document-conformance-requirements-for-use-of-aria-attributes-in-html
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://www.w3.org/TR/xmlschema11-2/#boolean
https://www.w3.org/TR/xmlschema11-2/#boolean
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#floating-point-numbers
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#floating-point-numbers
https://www.w3.org/TR/xmlschema11-2/#decimal
https://www.w3.org/TR/xmlschema11-2/#decimal
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#floating-point-numbers
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#floating-point-numbers
https://www.w3.org/TR/xmlschema11-2/#integer
https://www.w3.org/TR/xmlschema11-2/#integer
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#keywords-and-enumerated-attributes
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#space-separated-tokens
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#space-separated-tokens
https://www.w3.org/TR/xmlschema11-2/#NMTOKENS
https://www.w3.org/TR/xmlschema11-2/#NMTOKENS
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN
https://www.w3.org/TR/xmlschema11-2/#NMTOKEN

ID reference The value of a defined id attribute on another
element

IDREF

ID reference
list

The value of one or more defined id attributes
on other element(s), represented as Space-
separated tokens

IDREFS

string No value constraints string

• 16-Feb-2023: Resolved At-Risk items from CR

• 16-Feb-2023: Reverted spinbutton: Change the default value of aria-valuenow from 0 to "there is
no current value." Also add aria-valuetext as a supported property.

• 17-Sep-2021: Revised IDL and enumerated attribute section to reflect implementations

• 30-Aug-2021: removed ariaDescription from IDL section as was added erroneously

• 14-May-2021: Added Privacy and Security Considerations section

• 05-May-2021: clarify accessible name prohibited definition

• 10-Feb-2021: clarify including elements in accessibility tree to only require elements when actually
focused

• 08-Sep-2020: remove aria-level from tablist

• 08-Sep-2020: Remove contents as a supported name source for rowgroup.

• 08-Sep-2020: prohibit aria-roledescription on generic

• 08-Sep-2020: Require user agents to expose a value for combobox elements

• 08-Sep-2020: Remove multiple inheritance from menuitemcheckbox and menuitemradio

• 08-Sep-2020: Add missing implicit value for progressbar

• 27-Jul-2020: Update to define owned and container for

• 10-Jul-2020: Re-add aria-haspopup on links

• 15-May-2020: Remove nullable from IDL DOMStrings, add enumerated attributes prose and examples,
and remove ariaRelevant IDL until Issue #1267 can be resolved.

• 07-May-2020: Deprecate aria-disabled, aria-errormessage, aria-haspopup and aria-
invalid as globals rather than removing them.

• 03-Apr-2020: Clarify default values

B. Substantive changes since the WAI-ARIA 1.1 Recommendation

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

288 of 298 27/08/2025, 04:00

https://html.spec.whatwg.org/multipage/dom.html#the-id-attribute
https://html.spec.whatwg.org/multipage/dom.html#the-id-attribute
https://www.w3.org/TR/xmlschema11-2/#IDREF
https://www.w3.org/TR/xmlschema11-2/#IDREF
https://html.spec.whatwg.org/multipage/dom.html#the-id-attribute
https://html.spec.whatwg.org/multipage/dom.html#the-id-attribute
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#space-separated-tokens
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#space-separated-tokens
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#space-separated-tokens
https://html.spec.whatwg.org/multipage/common-microsyntaxes.html#space-separated-tokens
https://www.w3.org/TR/xmlschema11-2/#IDREFS
https://www.w3.org/TR/xmlschema11-2/#IDREFS
https://www.w3.org/TR/xmlschema11-2/#string
https://www.w3.org/TR/xmlschema11-2/#string
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/

• 03-Apr-2020: Revise meter authoring advice

• 26-Mar-2020: remove recommendation to use role="none presentation"

• 26-Mar-2020: Add info about layout and bounds to generic

• 03-Mar-2020: Clean up of Presentational roles conflict resolution section

• 20-Feb-2020: Update combobox to remove aria-multiline reference

• 01-Nov-2019: Modify combobox to new ARIA 1.2 pattern.

• 25-Oct-2019: Modify caption authoring advice

• 25-Oct-2019: Change aria-disabled, aria-errormessage, aria-haspopup and aria-invalid
from global to widget specific.

• 24-Oct-2019: Prohibits Labeling of caption, code, deletion, emphasis, insertion, paragraph,
presentation, strong, subscript, superscript

• 24-Oct-2019: Remove accessible name required from log and timer

• 24-Oct-2019: Allow group as child of listbox

• 24-Oct-2019: Add code role

• 24-Oct-2019: Add time role

• 24-Oct-2019: Add subscript and superscript roles

• 24-Oct-2019: Add meter role

• 23-Oct-2019: Resolve inconsistencies around group ownership of menuitem, menuitemcheckbox and
menuitemradio.

• 23-Oct-2019: Add generic role

• 22-Oct-2019: Clarify use of alertdialog and alert roles

• 22-Oct-2019: Add insertion and deletion roles

• 18-Oct-2019: Remove references to taxonomy file

• 18-Oct-2019: Remove implicit value from aria-checked on checkbox

• 17-Oct-2019: Add strong and emphasis roles

• 11-Oct-2019: Deprecate directory role

• 11-Oct-2019: Make form role accessible name required true

• 11-Oct-2019: Remove allowance of group in list

• 04-Sep-2019: Add aria-required as a supported property of checkbox

• 04-Sep-2019: Allow aria-posinset and aria-setsize on row when used in a treegrid.

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

289 of 298 27/08/2025, 04:00

• 04-Sep-2019: Add aria-expanded support to application and checkbox roles.

• 04-Sep-2019: Remove aria-expanded support from the following roles: alert, alertdialog,
article, banner, blockquote, caption, cell, complementary, contentinfo, definition,
deletion, dialog, directory, feed, figure, form, grid, group, heading, img, insertion,
landmark, list, listitem, log, main, marquee, math, menu, menubar, navigation, note,
paragraph, radiogroup, region, search, select, status, subscript, superscript, table,
tabpanel, term, time, timer, toolbar, tooltip, tree, treegrid.

• 04-Sep-2019: Remove children-presentational=true from math role

• 22-Aug-2019: Remove aria-level from grid

• 23-Jul-2019: Add generic role

• 11-Jul-2019: Remove advice against changing roles

• 11-Jul-2019: Set Accessible Name Required to false on gridcell

• 04-Jun-2019: Make aria-valuemin and aria-valuemax supported, rather than required, properties
of focusable separator, slider, and scrollbar. Make aria-orientation a supported, rather
than required, property of scrollbar.

• 27-Mar-2019: Add Translatable States and Properties Section

• 31-Jan-2019: Change the superclass of range from widget to structure.

• 23-Jan-2019: Removed Default value of aria-checked from menuitemcheckbox and
menuitemradio roles

• 09-Jan-2019: Removed Default value of aria-checked from switch and checkbox roles

• 05-Oct-2018: Role spinbutton: Change the default value of aria-valuenow from 0 to "there is no
current value." Also add aria-valuetext as a supported property.

• 05-Oct-2018: Role spinbutton: allow empty values, no min, no max, and structure with sibling
steppers

• 21-Aug-2018: Correct normative language in rowheader to be consistent with required states and
properties.

• 21-Jun-2018: Allow group as child of listbox.

• 31-May-2018: Add blockquote, caption, and paragraph roles.

• 01-Apr-2018: Added ARIA IDL Section (JavaScript interfaces).

• 06-Dec-2017: Make aria-expanded a supported state of menuitem. This change also makes it a
supported property of menuitemcheckbox and menuitemradio via inheritance.

• 06-Dec-2017: When aria-errormessage is not pertinent, authors MUST either ensure the content is not
rendered or remove the aria-errormessage attribute or its value. User agents MUST NOT expose aria-

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

290 of 298 27/08/2025, 04:00

errormessage for an object with an aria-invalid value of false.

This section is non-normative.

The following people contributed to the development of this document.

• Sina Bahram (Invited Expert)

• Curt Bellew (Oracle Corporation)

• Zoë Bijl (Invited Expert)

• Shari Butler (Pearson plc)

• Dominic Cooney (Meta)

• Michael Cooper (W3C Staff)

• James Craig (Apple Inc.)

• Joanmarie Diggs (Igalia)

• Isaac Durazo (Bocoup)

• Howard Edwards (Bocoup)

• Frank Elavsky (Invited Expert)

• Mayuri Faldu (Navy Federal Credit Union)

• Steve Faulkner (TPGi)

• Reinaldo Ferraz (NIC.br)

• Alexander Flenniken (Bocoup)

• Bryan Garaventa (Level Access)

• Rashmi Garimella (Google LLC)

• Matt Garrish (DAISY Consortium)

• Jaunita George (Navy Federal Credit Union)

C. Acknowledgments

C.1 Participants active in the ARIA WG at the time of publication

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

291 of 298 27/08/2025, 04:00

• Ariella Gilmore (IBM Corporation)

• Raghavendra Giriyappa (IBM Corporation)

• Michael Goddard (Bocoup)

• Glen Gordon (TPGi)

• Shirisha Gubba (Google LLC)

• Jon Gunderson (University of Illinois at Urbana-Champaign)

• Markku Hakkinen (Educational Testing Service)

• Sarah Higley (Microsoft Corporation)

• Hans Hillen (TPGi)

• Isabel Holdsworth (TPGi)

• Stanley Hon (Microsoft Corporation)

• Patrick Hung (University of Ontario Institute of Technology)

• Matthew King (Meta)

• Greta Krafsig (The Washington Post)

• Peter Krautzberger (Invited Expert)

• JaEun Jemma Ku (University of Illinois at Urbana-Champaign)

• Christopher Lane (VMWare)

• Charles LaPierre (Benetech)

• Gez Lemon (TPGi)

• Aaron Leventhal (Google LLC)

• Brian Liu Xu (Microsoft Corporation)

• David MacDonald (Invited Expert)

• Carolyn MacLeod (IBM Corporation)

• Mark McCarthy (University of Illinois at Urbana-Champaign)

• Jan McSorley (Pearson plc)

• Erika Miguel (Bocoup)

• Daniel Montalvo (W3C)

• Sheila Moussavi (Bocoup)

• James Nurthen (Adobe)

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

292 of 298 27/08/2025, 04:00

• Scott O'Hara (Microsoft Corporation)

• Adam Page (Intel Corporation)

• Michael Pennisi (Bocoup)

• Roberto Perez (Microsoft Corporation)

• Janina Sajka (Invited Expert, The Linux Foundation)

• Trish Salas (Level Access)

• Stefan Schnabel (SAP SE)

• Harris Schneiderman (Deque Systems, Inc.)

• Boaz Sender (Bocoup)

• Cynthia Shelly (Google LLC)

• Tzviya Siegman (Wiley)

• Avneesh Singh (DAISY Consortium)

• Neil Soiffer (Invited Expert)

• Francis Storr (Intel Corporation)

• Melanie Sumner (Invited Expert)

• Alexander Surkov (Igalia)

• James Teh (Mozilla Foundation)

• Seth Thompson (Bocoup)

• Jan Williams (TPGi)

• Benjamin Young (Wiley)

• Valerie Young (Igalia)

• Helen Zhou (University of Illinois)

• 骅 杨 (Shenzhen Accessibiltiy Research Association)

Ann Abbott (Invited Expert), Shadi Abou-Zahra (W3C), Irfan Ali (Educational Testing Service),
Jim Allan (TSB), CB Averitt (Deque Systems, Inc), Jonny Axelsson (Opera Software),
David Baron (Mozilla Foundation), Art Barstow (Nokia Corporation), Simon Bates,

C.2 Other ARIA contributors, commenters, and previously active participants

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

293 of 298 27/08/2025, 04:00

Amelia Bellamy-Royds (Invited Expert), Alex Bernier (Association BrailleNet),
Jorge Blazquez Alonso (IBM Corporation), Christy Blew (University of Illinois at Urbana-Champaign),
Chris Blouch (AOL), David Bolter (Mozilla Foundation), Alice Boxhall (Igalia),
Judy Brewer (W3C/MIT), Mark Birbeck (Sidewinder Labs), Matthew Brennan (Facebook),
Bogdan Brinza (Microsoft Corporation), Kim Bunge (TPGi),
Sally Cain (Royal National Institute of Blind People (RNIB)), Ben Caldwell (Trace),
Thaddeus Cambron (Invited Expert), Tammy Campoverde (UnitedHealth Group),
Gerardo Capiel (Benetech), David Caro (Wikimedia Foundation), Sofia Celic-Li,
Jaesik Chang (Samsung Electronics Co., Ltd.), Alex Qiang Chen (University of Manchester),
Charles Chen (Google, Inc.), Gerard K. Cohen, Christian Cohrs,
Timothy Cole (University of Illinois at Urbana-Champaign), Jory Cunningham (Salesforce),
Deborah Dahl, Erik Dahlström (Opera Software), Jes Daigle (Bocoup),
Dimitar Denev (Frauenhofer Gesellschaft), Jason Duan (IBM Corporation),
Micah Dubinko (Invited Expert), Mandana Eibegger, Beth Epperson (Websense),
Fred Esch (IBM Corporation), Donald Evans (AOL), Chris Fleizach (Apple Inc.),
John Foliot (Deque Systems, Inc.), Kelly Ford (Microsoft Corporation),
Geoff Freed (Invited Expert, NCAM), Kentarou Fukuda (IBM Corporation),
Christopher Gallelo (Microsoft Corporation), Billy Gregory (The Paciello Group, LLC),
Karl Groves (The Paciello Group, LLC), Birkir Gunnarsson (Deque Systems, Inc.), Guido Geloso,
Ali Ghassemi, Becky Gibson (Invited Expert), Alfred S. Gilman,
Andres Gonzalez (Adobe Systems Inc.), Scott González (JQuery Foundation), James Graham,
Georgios Grigoriadis (SAP AG), Jeff Grimes (Oracle), Loretta Guarino Reid (Google, Inc.),
Markus Gylling (DAISY Consortium), Katie Haritos-Shea (Knowbility), Barbara Hartel,
James Hawkins (Google, Inc.), Benjamin Hawkes-Lewis, Sean Hayes (Microsoft Corporation),
Mona Heath (University of Illinois at Urbana-Champaign), Jan Heck, Shawn Henry, Tina Homboe,
Nicholas Hoyt (University of Illinois at Urbana-Champaign), John Hrvatin (Microsoft Corporation),
Takahiro Inada, Masayasu Ishikawa (W3C), Jim Jewitt, Kenny Johar (Microsoft Corporation),
Earl Johnson (Sun), Masahiko Kaneko (Microsoft Corporation),
Shilpi Kapoor (BarrierBreak Technologies), Marjolein Katsma, Susann Keohane (IBM Corporation),
George Kerscher (International Digital Publishing Forum),
Jason Kiss (Department of Internal Affairs, New Zealand Government), Todd Kloots,
Jamie Knight (British Broadcasting Corporation), Johannes Koch, Sam Kuper, Jael Kurz,
Rajesh Lal (Nokia Corporation),
Diego La Monica (International Webmasters Association / HTML Writers Guild (IWA-HWG)),
Lori Lane (University of Illinois at Urbana-Champaign), Alex Li (SAP), Chris Lilley,
Thomas Logan (HiSoftware Inc.), Brian Loh, William Loughborough (Invited Expert),
Krzysztof Maczyński , Linda Mao (Microsoft), Anders Markussen (Opera Software),
Daniel Marques (WIRIS Science), Matthew May (Adobe Systems Inc.),
Dominic Mazzoni (Google LLC), Shane McCarron (Invited Expert, Aptest),
Charles McCathie Nevile (Yandex), Juliette McShane (Access2online Inc.),
Heather Migliorisi (Invited Expert), Mary Jo Mueller (IBM Corporation), Alexandre Morgaut (4D),

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

294 of 298 27/08/2025, 04:00

Ann Navarro (Invited Expert), Rich Noah (Bocoup), Joshue O Connor (Invited Expert, CFIT),
Achraf Othman (MADA Center), Artur Ortega (Microsoft Corporation), Sailesh Panchang (Deque),
Lisa Pappas (Society for Technical Communication (STC)),
Marta Pawlowlska (Samsung Electronics Co., Ltd.), Dave Pawson (RNIB),
Steven Pemberton (CWI Amsterdam), Vijaya Gowri Perumal (Newgen Knowledgeworks),
Christos Petrou (Centre for Inclusive Design), Simon Pieters (Bocoup), Jean-Bernard Piot (4D),
David Poehlman (Opera Software), Ian Pouncey (TetraLogical Services Ltd),
Sarah Pulis (Media Access Australia), T.V. Raman (Google, Inc.), Ruoxi Ran (W3C Staff),
Melanie Richards (Microsoft Corporation), Jan Richards, Adrian Roselli (TPGi),
Gregory Rosmaita (Invited Expert), Tony Ross (Microsoft Corporation),
Alex Russell (Dojo Foundation), Mark Sadecki (Invited Expert),
Mario Sánchez Prada (Samsung Electronics Co., Ltd. and Gnome Foundation),
Martin Schaus (SAP AG), Doug Schepers (W3C), Cynthia Shelly (Microsoft Corporation) ,
Joseph Scheuhammer (Invited Expert, Inclusive Design Research Centre, OCAD University) ,
Matthias Schmitt , Richard Schwerdtfeger (IBM, Knowbility),
Lisa Seeman-Kestenbaum (Invited Expert) , Marc Silbey (Microsoft Corporation), Leif Halvard Sili,
Henri Sivonen (Mozilla), Ville Skyttä , Sharon Snider (IBM Corporation), Michael Smith (W3C),
Andi Snow-Weaver (IBM Corporation), Volker Sorge (Invited Expert), Vitaly Sourikov,
Mike Squillace (IBM), Maciej Stachowiak (Apple Inc.), Christophe Strobbe, Henny Swan (BBC),
Suzanne Taylor (Pearson plc), William Tennis (Navy Federal Credit Union), Terrill Thompson,
David Todd, Gregg Vanderheiden (Invited Expert, Trace), Job van Achterberg (Invited Expert),
Anne van Kesteren, Scott Vinkle (Shopify), Wen He (Tencent), Can Wang (Zhejiang University),
Wei Wang (Zhejiang University), Léonie Watson (TetraLogical Services Ltd), Wu Wei (W3C / RITT),
Jason White (Educational Testing Service), Sam White (Apple Inc.), Ryan Williams (Oracle),
Tom Wlodkowski, Evan Yamanishi (W. W. Norton), Marco Zehe (Mozilla Foundation),
Gottfried Zimmermann (Invited Expert, Access Technologies Group)

This publication has been funded in part with U.S. Federal funds from the Department of Education, National
Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR), initially under contract
number ED-OSE-10-C-0067, then under contract number HHSP23301500054C, and now under
HHS75P00120P00168. The content of this publication does not necessarily reflect the views or policies of
the U.S. Department of Education, nor does mention of trade names, commercial products, or organizations
imply endorsement by the U.S. Government.

C.3 Enabling funders

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

295 of 298 27/08/2025, 04:00

[ACCNAME-1.2]
Accessible Name and Description Computation 1.2. Bryan Garaventa; Joanmarie Diggs; Michael
Cooper. W3C. 11 July 2019. W3C Working Draft. URL: https://www.w3.org/TR/accname-1.2/

[CORE-AAM]
Core Accessibility API Mappings 1.1. Joanmarie Diggs; Joseph Scheuhammer; Richard Schwerdtfeger;
Michael Cooper; Andi Snow-Weaver; Aaron Leventhal. W3C. 14 December 2017. W3C
Recommendation. URL: https://www.w3.org/TR/core-aam-1.1/

[CORE-AAM-1.2]
Core Accessibility API Mappings 1.2. Valerie Young; Alexander Surkov; Michael Cooper. W3C. 18
May 2023. W3C Candidate Recommendation. URL: https://www.w3.org/TR/core-aam-1.2/

[CSS3-SELECTORS]
Selectors Level 3. Tantek Çelik; Elika Etemad; Daniel Glazman; Ian Hickson; Peter Linss; John
Williams. W3C. 6 November 2018. W3C Recommendation. URL: https://www.w3.org/TR/selectors-3/

[DOM]
DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL: https://dom.spec.whatwg.org/

[HTML]
HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon Pieters.
WHATWG. Living Standard. URL: https://html.spec.whatwg.org/multipage/

[MathML3]
Mathematical Markup Language (MathML) Version 3.0 2nd Edition. David Carlisle; Patrick D F Ion;
Robert R Miner. W3C. 10 April 2014. W3C Recommendation. URL: https://www.w3.org/TR/
MathML3/

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current
Practice. URL: https://www.rfc-editor.org/rfc/rfc2119

[ROLE-ATTRIBUTE]
Role Attribute 1.0. Shane McCarron et al. W3C. 28 March 2013. W3C Recommendation. URL: https://
www.w3.org/TR/role-attribute/

[SVG2]
Scalable Vector Graphics (SVG) 2. Amelia Bellamy-Royds; Bogdan Brinza; Chris Lilley; Dirk Schulze;
David Storey; Eric Willigers. W3C. 4 October 2018. W3C Candidate Recommendation. URL: https://
www.w3.org/TR/SVG2/

D. References

D.1 Normative references

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

296 of 298 27/08/2025, 04:00

https://www.w3.org/TR/accname-1.2/
https://www.w3.org/TR/accname-1.2/
https://www.w3.org/TR/accname-1.2/
https://www.w3.org/TR/accname-1.2/
https://www.w3.org/TR/accname-1.2/
https://www.w3.org/TR/core-aam-1.1/
https://www.w3.org/TR/core-aam-1.1/
https://www.w3.org/TR/core-aam-1.1/
https://www.w3.org/TR/core-aam-1.1/
https://www.w3.org/TR/core-aam-1.1/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/core-aam-1.2/
https://www.w3.org/TR/selectors-3/
https://www.w3.org/TR/selectors-3/
https://www.w3.org/TR/selectors-3/
https://www.w3.org/TR/selectors-3/
https://www.w3.org/TR/selectors-3/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://dom.spec.whatwg.org/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/role-attribute/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/

[uievents-key]
UI Events KeyboardEvent key Values. Travis Leithead; Gary Kacmarcik. W3C. 30 May 2023. W3C
Candidate Recommendation. URL: https://www.w3.org/TR/uievents-key/

[webidl]
Web IDL Standard. Edgar Chen; Timothy Gu. WHATWG. Living Standard. URL: https://
webidl.spec.whatwg.org/

[XML-NAMES]
Namespaces in XML 1.0 (Third Edition). Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin;
Henry Thompson et al. W3C. 8 December 2009. W3C Recommendation. URL: https://www.w3.org/TR/
xml-names/

[AT-SPI]
Assistive Technology Service Provider Interface. The GNOME Project. URL: https://developer-
old.gnome.org/libatspi/stable/

[ATK]
ATK - Accessibility Toolkit. The GNOME Project. URL: https://developer.gnome.org/atk/stable/

[AXAPI]
The NSAccessibility Protocol for macOS. Apple, Inc. URL: https://developer.apple.com/documentation/
appkit/nsaccessibility

[HTML-ARIA]
ARIA in HTML. Steve Faulkner; Scott O'Hara; Patrick Lauke. W3C. 31 May 2023. W3C
Recommendation. URL: https://www.w3.org/TR/html-aria/

[IAccessible2]
IAccessible2. Linux Foundation. URL: https://wiki.linuxfoundation.org/accessibility/iaccessible2/

[MSAA]
Microsoft Active Accessibility (MSAA). Microsoft Corporation. URL: https://docs.microsoft.com/en-us/
windows/win32/winauto/microsoft-active-accessibility

[UI-AUTOMATION]
UI Automation. Microsoft Corporation. URL: https://docs.microsoft.com/en-us/windows/win32/
winauto/ui-automation-specification

[UIA-EXPRESS]
The IAccessibleEx Interface. Microsoft Corporation. URL: https://docs.microsoft.com/en-us/windows/
win32/winauto/iaccessibleex

[wai-aria-1.1]
Accessible Rich Internet Applications (WAI-ARIA) 1.1. Joanmarie Diggs; Shane McCarron; Michael
Cooper; Richard Schwerdtfeger; James Craig. W3C. 14 December 2017. W3C Recommendation. URL:

D.2 Informative references

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

297 of 298 27/08/2025, 04:00

https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://www.w3.org/TR/uievents-key/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/
https://developer-old.gnome.org/libatspi/stable/
https://developer-old.gnome.org/libatspi/stable/
https://developer-old.gnome.org/libatspi/stable/
https://developer-old.gnome.org/libatspi/stable/
https://developer-old.gnome.org/libatspi/stable/
https://developer-old.gnome.org/libatspi/stable/
https://developer-old.gnome.org/libatspi/stable/
https://developer.gnome.org/atk/stable/
https://developer.gnome.org/atk/stable/
https://developer.gnome.org/atk/stable/
https://developer.gnome.org/atk/stable/
https://developer.gnome.org/atk/stable/
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://developer.apple.com/documentation/appkit/nsaccessibility
https://www.w3.org/TR/html-aria/
https://www.w3.org/TR/html-aria/
https://www.w3.org/TR/html-aria/
https://www.w3.org/TR/html-aria/
https://www.w3.org/TR/html-aria/
https://wiki.linuxfoundation.org/accessibility/iaccessible2/
https://wiki.linuxfoundation.org/accessibility/iaccessible2/
https://wiki.linuxfoundation.org/accessibility/iaccessible2/
https://wiki.linuxfoundation.org/accessibility/iaccessible2/
https://wiki.linuxfoundation.org/accessibility/iaccessible2/
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-automation-specification
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-automation-specification
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-automation-specification
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-automation-specification
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-automation-specification
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-automation-specification
https://docs.microsoft.com/en-us/windows/win32/winauto/ui-automation-specification
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://docs.microsoft.com/en-us/windows/win32/winauto/iaccessibleex
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/

https://www.w3.org/TR/wai-aria-1.1/

[WAI-ARIA-PRACTICES-1.2]
WAI-ARIA Authoring Practices 1.2. Matthew King; JaEun Jemma Ku; James Nurthen; Zoë Bijl;
Michael Cooper. W3C. 19 May 2022. W3C Working Group Note. URL: https://www.w3.org/TR/wai-
aria-practices-1.2/

[WCAG21]
Web Content Accessibility Guidelines (WCAG) 2.1. Andrew Kirkpatrick; Joshue O'Connor; Alastair
Campbell; Michael Cooper. W3C. 5 June 2018. W3C Recommendation. URL: https://www.w3.org/TR/
WCAG21/

[XMLSCHEMA11-2]
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. David Peterson; Sandy Gao;
Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C. 5 April
2012. W3C Recommendation. URL: https://www.w3.org/TR/xmlschema11-2/

↑

Accessible Rich Internet Applications (WAI-ARIA) 1.2 https://www.w3.org/TR/wai-aria-1.2/

298 of 298 27/08/2025, 04:00

https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/TR/wai-aria-practices-1.2/
https://www.w3.org/TR/wai-aria-practices-1.2/
https://www.w3.org/TR/wai-aria-practices-1.2/
https://www.w3.org/TR/wai-aria-practices-1.2/
https://www.w3.org/TR/wai-aria-practices-1.2/
https://www.w3.org/TR/wai-aria-practices-1.2/
https://www.w3.org/TR/wai-aria-practices-1.2/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/

