CSS Counter Styles Level 3

W3C Candidate Recommendation Snapshot, 27 July 2021

This version:
https://www.w3.org/TR/2021/CR-css-counter-styles-3-20210727/

Latest published version:
https://www.w3.0org/TR/css-counter-styles-3/

Editor's Draft:
https://drafts.csswg.org/css-counter-styles/

Previous Versions:
https:// www.w3.org/TR/2017/CR-css-counter-styles-3-20171214/

https://www.w3.0rg/TR/2015/CR-css-counter-styles-3-20150611/

https://www.w3.0rg/TR/2014/WD-css-counter-styles-3-20140826/
https://www.w3.org/TR/2013/WD-css-counter-styles-3-20130718/
https://www.w3.0rg/TR/2013/WD-css-counter-styles-3-20130221/
https://www.w3.org/TR/2012/WD-css-counter-styles-3-20121009/

Implementation Report:
https://test.csswg.org/harness/results/css-counter-styles-3_dev/grouped/

Test Suite:
http://test.csswg.org/suites/css-counter-styles-3_dev/nightly-unstable

Issue Tracking:
CSSWG Issues Repository

Editor:
Tab Atkins Jr. (Google)

Suggest an Edit for this Spec:
GitHub Editor

Copyright © 2021 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules
apply.

Abstract

This module introduces the ‘@counter-style’ rule, which allows authors to define their own custom

counter styles for use with CSS list-marker and generated-content counters [CSS-LISTS-3]. It also

predefines a set of common counter styles, including the ones present in CSS2 and CSS2.1.

CSS is a language for describing the rendering of structured documents (such as HTML and XML) on

screen, on paper, etc.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical

report can be found in the W3C technical reports index at https://www.w3.org/TR/.

This document was published by the CSS Working Group as a Candidate Recommendation
Snapshot. Publication as a Candidate Recommendation does not imply endorsement by the W3C
Membership. A Candidate Recommendation Snapshot has received wide review and is intended to
gather implementation experience. This document is intended to become a W3C Recommendation; it

will remain a Candidate Recommendation at least until 27 October 2021 to gather additional feedback.

Please send feedback by filing issues in GitHub (preferred), including the spec code “css-counter-
styles” in the title, like this: “[css-counter-styles] ...summary of comment...”. All issues and comments

are archived. Alternately, feedback can be sent to the (archived) public mailing list www-

style@w3.org.

This document is governed by the 15 September 2020 W3C Process Document.

This document was produced by a group operating under the W3C Patent Policy. W3C maintains a

public list of any patent disclosures made in connection with the deliverables of the group; that page

also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

The following features are at-risk, and may be dropped during the CR period:

¢ the <image> value in <symbol>

“At-risk” is a W3C Process term-of-art, and does not necessarily imply that the feature is in danger of
being dropped or delayed. It means that the WG believes the feature may have difficulty being
interoperably implemented in a timely manner, and marking it as such allows the WG to drop the
feature if necessary when transitioning to the Proposed Rec stage, without having to publish a new
Candidate Rec without the feature first.

Table of Contents

1 Introduction

2 Counter Styles

3 Defining Custom Counter Styles: the ‘@counter-style’ rule

3.1 Counter algorithms: the ‘system’ descriptor

3.1.1 Cycling Symbols: the ‘cyclic’ system

3.1.2 Exhaustible Symbols: the ‘fixed” system

3.1.3 Repeating Symbols: the ‘symbolic’ system

3.1.4 Bijective Numerals: the ‘alphabetic’ system

3.1.5 Positional Numerals: the ‘numeric’ system

3.1.6 Accumulating Numerals: the ‘additive’ system

3.1.7 Building from Existing Counter Styles: the ‘extends’ system

3.2 Formatting negative values: the ‘negative’ descriptor

33 Symbols before the marker: the “prefix” descriptor

3.4 Symbols after the marker: the ‘suffix” descriptor

3.5 Limiting the counter scope: the ‘range’ descriptor

3.6 Zero-Padding and Constant-Width Representations: the ‘pad’ descriptor
3.7 Defining fallback: the ‘fallback’ descriptor

3.8 Marker characters: the ‘symbols’ and ‘additive-symbols’ descriptors
3.9 Speech Synthesis: the ‘speak-as’ descriptor

4 Defining Anonymous Counter Styles: the ‘symbols()’ function

5 Extending ‘list-style-type’, ‘counter()’, and ‘counters()’

Simple Predefined Counter Styles

6.1 Numeric: ‘decimal’, ‘decimal-leading-zero’, ‘arabic-indic’, ‘armenian’, ‘upper-armenian’,
‘lower-armenian’, ‘bengali’, ‘cambodian’, ‘khmer’, ‘cjk-decimal’, ‘devanagari’,
[4 . b < 3 b] 19 b 19 b < 9 < b 19 b [3 . b
georgian’, ‘gujarati’, ‘gurmukhi’, ‘hebrew’, ‘kannada’, ‘lao’, ‘malayalam’, ‘mongolian’,
‘myanmar’, ‘oriya’, ‘persian’, ‘lower-roman’, ‘upper-roman’, ‘tamil’, ‘telugu’, ‘thai’,

‘tibetan’

6.2 Alphabetic: ‘lower-alpha’, ‘lower-latin’, ‘upper-alpha’, ‘upper-latin’, ‘lower-greek’,
‘hiragana’, ‘hiragana-iroha’, ‘katakana’, ‘katakana-iroha’

6.3 Symbolic: ‘disc’, ‘circle’, ‘square’, ‘disclosure-open’, ‘disclosure-closed’

6.4 Fixed: ‘cjk-earthly-branch’, ‘cjk-heavenly-stem’

7 Complex Predefined Counter Styles

7.1 Longhand East Asian Counter Styles

7.1.1 Japanese: ‘japanese-informal’ and ‘japanese-formal’

7.1.2
7.1.3

7.2

9.1
9.2

10

Korean: ‘korean-hangul-formal’, ‘korean-hanja-informal’, and ‘korean-hanja-formal’

Chinese: ‘simp-chinese-informal’, ‘simp-chinese-formal’, ‘trad-chinese-informal’, and

‘trad-chinese-formal’

Ethiopic Numeric Counter Style: ‘ethiopic-numeric’
Additional “Ready-made” Counter Styles

APIs
Extensions to the CSSRule interface

The CSSCounterStyleRule interface

Sample style sheet for HTML

Changes

Changes since the December 2017 Candidate Recommendation

Changes since the June 2015 Candidate Recommendation

Changes since the Feb 2015 Candidate Recommendation
Acknowledgments
Privacy and Security Considerations

Conformance
Document conventions
Conformance classes
Partial implementations
Implementations of Unstable and Proprietary Features
Non-experimental implementations

CR exit criteria

Index
Terms defined by this specification

Terms defined by reference

References
Normative References

Informative References

Property Index

@counter-style Descriptors

IDL Index

1. Introduction

CSS 1 defined a handful of useful counter styles based on the styles that HTML traditionally allowed
on ordered and unordered lists. While this was expanded slightly by CSS2.1, it doesn’t address the
needs of worldwide typography.

This module introduces the ‘@counter-style’ rule which allows CSS to address this in an open-ended

manner, by allowing the author to define their own counter styles. These styles can then be used in the

‘list-style-type’ property or in the ‘counter()’ and ‘counters()’ functions. It also defines some
additional predefined counter styles, particularly ones which are common but complicated to represent

with ‘(@counter-style’.

2. Counter Styles

A counter style defines how to convert a counter value into a string. Counter styles are composed of:

a name, to identify the style

¢ an algorithm, which transforms integer counter values into a basic string representation

e anegative sign, which is prepended or appended to the representation of a negative counter value.
e a prefix, to prepend to the representation

¢ asuffix to append to the representation

¢ arange, which limits the values that a counter style handles

¢ aspoken form, which describes how to read out the counter style in a speech synthesizer

¢ and a fallback style, to render the representation with when the counter value is outside the

counter style’s range or the counter style otherwise can’t render the counter value

When asked to generate a counter representation using a particular counter style for a particular

counter value, follow these steps:

1. If the counter style is unknown, exit this algorithm and instead generate a counter representation

using the ‘decimal’ style and the same counter value.

2. If the counter value is outside the ‘range’ of the counter style, exit this algorithm and instead

generate a counter representation using the counter style’s fallback style and the same counter

value.

3. Using the counter value and the counter algorithm for the counter style, generate an initial

representation for the counter value. If the counter value is negative and the counter style uses a

negative sign, instead generate an initial representation using the absolute value of the counter

value.
4. Prepend symbols to the representation as specified in the ‘pad’ descriptor.

5. If the counter value is negative and the counter style uses a negative sign, wrap the representation

in the counter style’s negative sign as specified in the ‘negative’ descriptor.

6. Return the representation.

Note: ‘prefix’ and ‘suffix’ don’t play a part in this algorithm. This is intentional; the prefix and

suffix aren’t part of the string returned by the counter() or counters() functions. Instead, the prefix
and suffix are added by the algorithm that constructs the value of the ‘content’ property for the
‘::marker’ pseudo-element. This also implies that the prefix and suffix always come from the

specified counter-style, even if the actual representation is constructed by a fallback style.

Some values of ‘system’ (‘symbolic’, ‘additive’) and some descriptors (‘pad’) can generate
representations with size linear to an author-supplied number. This can potentially be abused to
generate excessively large representations and consume undue amounts of the user’s memory or even
hang their browser. User agents must support representations at least 60 Unicode codepoints long, but
they may choose to instead use the fallback style for representations that would be longer than 60

codepoints.

3. Defining Custom Counter Styles: the ‘@counter-style’ rule

The ‘@counter-style’ rule allows authors to define a custom counter style. The components of a

counter style are specified by descriptors in the ‘@counter-style’ rule. The algorithm is specified

implicitly by a combination of the ‘system’, ‘symbols’, and ‘additive-symbols’ properties.

The general form of an ‘@counter-style’ rule is:

@counter-style <counter-style-name> { <declaration-1list> }

‘<counter-style-name>’ is a <custom-ident> that is not an ASCII case-insensitive match for ‘none’.

The <counter-style-name> is a tree-scoped name.

The keywords ‘decimal’, ‘disc’, ‘square’, ‘circle’, ‘disclosure-open’, and ‘disclosure-closed’ are valid

<counter-style-name>s, but are invalid when used here to name a counter style rule; doing so makes

the rule invalid. (They can be used in other contexts, such as in the ‘extend’ system.)

Note: Note that <custom-ident> also automatically excludes the CSS-wide keywords. In addition,

some names, like ‘inside’, are valid as counter style names, but conflict with the existing values of

properties like ‘list-style’, and so won’t be usable there.

Counter style names are case-sensitive. However, the names defined in this specification are ASCII
lower-cased on parse wherever they are used as counter styles, e.g. in the ‘list-style’ set of properties,
in the ‘@counter-style’ rule, and in the ‘counter()’ functions.

Each ‘(@counter-style’ rule specifies a value for every counter-style descriptor, either implicitly or

explicitly. Those not given explicit value in the rule take the initial value listed with each descriptor in
this specification. These descriptors apply solely within the context of the ‘(@counter-style’ rule in

which they are defined, and do not apply to document language elements. There is no notion of which
elements the descriptors apply to or whether the values are inherited by child elements. When a given
descriptor occurs multiple times in a given ‘@counter-style’ rule, only the last-specified valid value is

used; all prior values for that descriptor must be ignored.

Defining a ‘(@counter-style’ makes it available to the entire document in which it is included. If

multiple ‘@counter-style’ rules are defined with the same name, only one wins, according to standard
cascade rules. ‘@counter-style’ rules cascade "atomically": if one replaces another of the same name,

it replaces it entirely, rather than just replacing the specific descriptors it specifies.

Note: Note that even the predefined counter styles can be overridden; the UA stylesheet occurs

before any other stylesheets, so the predefined ones always lose in the cascade.

This at-rule conforms with the forward-compatible parsing requirement of CSS; conformant parsers
that don’t understand these rules will ignore them without error. Any descriptors that are not
recognized or implemented by a given user agent, or whose value does not match the grammars given
here or in a future version of this specification, must be ignored in their entirety; they do not make the

‘(@counter-style’ rule invalid.

3.1. Counter algorithms: the ‘system’ descriptor

Name: ‘system’

For: ‘(@counter-style’

Value: cyclic | numeric | alphabetic | symbolic | additive | [fixed <integer>?] | [extends
<counter-style-name>]

Initial: symbolic
The ‘system’ descriptor specifies which algorithm will be used to construct the counter’s
representation based on the counter value. For example, ‘cyclic’ counter styles just cycle through their

symbols repeatedly, while ‘numeric’ counter styles interpret their symbols as digits and build their

representation accordingly. The systems are defined in the following subsections.

Each ‘system’ value is associated with either the ‘symbols’ or ‘additive-symbols’ descriptors, and has

a minimum length that the appropriate descriptor must have; each entry below defines what this is. If a

‘(@counter-style’ rule fails to meet this requirement, it does not define a counter style. (The rule is still

syntactically valid, but has no effect.)

3.1.1. Cycling Symbols: the ‘cyclic’ system

The ‘cyclic’ counter system cycles repeatedly through its provided symbols, looping back to the

beginning when it reaches the end of the list. It can be used for simple bullets (just provide a single

counter symbol), or for cycling through multiple symbols. The first counter symbol is used as the
representation of the value 1, the second counter symbol (if it exists) is used as the representation of

the value 2, etc.

If the system is ‘cyclic’, the ‘symbols’ descriptor must contain at least one counter symbol. This

system is defined over all counter values.

EXAMPLE 1

A "triangle bullet" counter style can be defined as:

@counter-style triangle {
system: cyclic;
symbols: »;

suffix: ;

}

It will then produce lists that look like:

» One
» Two
» Three

If there are N counter symbols and a representation is being constructed for the integer value, the

representation is the counter symbol at index ((value-1) mod N) of the list of counter symbols (0-
indexed).

3.1.2. Exhaustible Symbols: the ‘fixed’ system

The ‘fixed’ counter system runs through its list of counter symbols once, then falls back. It is useful
for representing counter styles that only have a finite number of representations. For example, Unicode

defines several limited-length runs of special characters meant for lists, such as circled digits.

If the system is ‘fixed’, the ‘symbols’ descriptor must contain at least one counter symbol. This system

is defined over counter values in a finite range, starting with the first symbol value and having a length

equal to the length of the list of counter symbols.

When this system is specified, it may optionally have an integer provided after it, which sets the first

symbol value. If it is omitted, the first symbol value is 1.

EXAMPLE 2

A "box-corner" counter style can be defined as:

@counter-style box-corner {
system: fixed;
symbols: 1 M@ @ HI;

suffix: ': ';

}

It will then produce lists that look like:

One
Two
Three
Four

Five

oo aHBE0

Six

The first counter symbol is the representation for the first symbol value, and subsequent counter values

are represented by subsequent counter symbols. Once the list of counter symbols is exhausted, further
values cannot be represented by this counter style, and must instead be represented by the fallback

counter style.

3.1.3. Repeating Symbols: the ‘symbolic’ system

The ‘symbolic’ counter system cycles repeatedly through its provided symbols, doubling, tripling, etc.
the symbols on each successive pass through the list. For example, if the original symbols were "*"
and "{", then on the second pass they would instead be "**" and "{71", while on the third they would
be "***"and "{11", etc. It can be used for footnote-style markers, and is also sometimes used for

alphabetic-style lists for a slightly different presentation than what the ‘alphabetic’ system presents.

If the system is ‘symbolic’, the ‘symbols’ descriptor must contain at least one counter symbol. This

system is defined only over strictly positive counter values.

EXAMPLE 3

An "footnote" counter style can be defined as:

@counter-style footnote {

system: symbolic;
symbols: '*' ¥ t %;

suffix: ;

}

It will then produce lists that look like:

* One

¥ Two

t Three

¥ Four

** Five

X Six
EXAMPLE 4

Some style guides mandate a list numbering that looks similar to ‘upper-alpha’, but repeats
differently after the first 26 values, instead going "AA", "BB", "CC", etc. This can be achieved
with the symbolic system:

@counter-style upper-alpha-Llegal {
system: symbolic;
symbols: ABCDEFGHIIJIKLM
NOPQRSTUVWNWXY Z;

}

This style is identical to ‘upper-alpha’ through the first 27 values, but they diverge after that, with
‘upper-alpha’ going "AB", "AC", "AD", etc. Starting at the 53rd value, ‘upper-alpha’ goes "BA",
"BB", "BC", etc., while this style jumps into triple digits with "AAA", "BBB", "CCC", etc.

To construct the representation, run the following algorithm:

Let N be the length of the list of counter symbols, value initially be the counter value, S initially be the
empty string, and symbol(n) be the nth counter symbol in the list of counter symbols (0-indexed).

1. Let the chosen symbol be symbol((value - 1) mod N).

2. Let the representation length be ceil(value / N).

3. Append the chosen symbol to S a number of times equal to the representation length.

Finally, return S.

3.1.4. Bijective Numerals: the ‘alphabetic’ system

The ‘alphabetic’ counter system interprets the list of counter symbols as digits to an alphabetic

numbering system, similar to the default ‘lower-alpha’ counter style, which wraps from "a", "b", "c",
to "aa", "ab", "ac". Alphabetic numbering systems do not contain a digit representing 0; so the first

value when a new digit is added is composed solely of the first digit. Alphabetic numbering systems
are commonly used for lists, and also appear in many spreadsheet programs to number columns. The

first counter symbol in the list is interpreted as the digit 1, the second as the digit 2, and so on.

If the system is ‘alphabetic’, the ‘symbols’ descriptor must contain at least two counter symbols. This

system is defined only over strictly positive counter values.

EXAMPLE 5

A counter style using go stones can be defined as:

@counter-style go {
system: alphabetic;
symbols: url(white.svg) url(black.svg);

suffix: ;

It will then produce lists that look like:

O One

@ 1vo

OO Three
O@® Four
@O Five
Q0 six
OO0 Seven

Note: This example requires support for SVG images to display correctly.

If there are N counter symbols, the representation is a base N alphabetic number using the counter

symbols as digits. To construct the representation, run the following algorithm:

Let N be the length of the list of counter symbols, value initially be the counter value, S initially be the

empty string, and symbol(n) be the nth counter symbol in the list of counter symbols (0-indexed).
While value is not equal to 0:

1. Set value to value - 1.
2. Prepend symbol(value mod N) to S.

3. Set value to floor(value / N).

Finally, return S.

3.1.5. Positional Numerals: the ‘numeric’ system

The ‘numeric’ counter system interprets the list of counter symbols as digits to a "place-value"

numbering system, similar to the default ‘decimal’ counter style. The first counter symbol in the list is
interpreted as the digit 0, the second as the digit 1, and so on.

If the system is ‘numeric’, the ‘symbols’ descriptor must contain at least two counter symbols. This

system is defined over all counter values.

EXAMPLE 6

A "trinary" counter style can be defined as:

@counter-style trinary {
system: numeric;
symbols: ‘@' '1' '2';

}

It will then produce lists that look like:

One

. Two
10. Three
11. Four
12. Five

20. Six

If there are N counter symbols, the representation is a base N number using the counter symbols as

digits. To construct the representation, run the following algorithm:

Let N be the length of the list of counter symbols, value initially be the counter value, S initially be the

empty string, and symbol(n) be the nth counter symbol in the list of counter symbols (0-indexed).

1. If value 1s 0, append symbol(®) to S and return S.

2. While value is not equal to 0:
1. Prepend symbol(value mod N) to S.

2. Set value to floor(value / N).

3. Return S.

3.1.6. Accumulating Numerals: the ‘additive’ system

The ‘additive’ counter system is used to represent "sign-value" numbering systems, which, rather than
reusing digits in different positions to change their value, define additional digits with much larger
values, so that the value of the number can be obtained by adding all the digits together. This is used in

Roman numerals and other numbering systems around the world.

If the system is ‘additive’, the ‘additive-symbols’ descriptor must contain at least one additive tuple.

This system is nominally defined over all counter values (see algorithm, below, for exact details).

EXAMPLE 7

A "dice" counter style can be defined as:

@counter-style dice {
system: additive;
additive-symbols: 6 @, 5@, 4 @8, 3@, 20O, 10;

suffix: ;

}

It will then produce lists that look like:

E One
B Two
E Three

Eleven
Twelve
HEEED Thirteen

To construct the representation:

1. Let value initially be the counter value, S initially be the empty string, and symbol list initially be

the list of additive tuples.

2. If value is zero:

1. If symbol list contains a tuple with a weight of zero, append that tuple’s counter symbol to
S and return S.

2. Otherwise, the given counter value cannot be represented by this counter style, and must
instead be represented by the fallback counter style.

3. For each tuple in symbol list:

1. Let symbol and weight be tuple’s counter symbol and weight, respectively.

2. If weight is zero, or weight is greater than value, continue.
3. Let reps be floor(value / weight).
4. Append symbol to S reps times.
5. Decrement value by weight * reps.
6. If value is zero, return S.
4. Assertion: value is still non-zero.

The given counter value cannot be represented by this counter style, and must instead be

represented by the fallback counter style.

Note: All of the predefined additive ‘(@counter-style’ rules in this specification produce

representations for every value in their range, but it’s possible to produce values for ‘additive-
symbols’ that will fail to find a representation with the algorithm defined above, even though
theoretically a representation could be found. For example, if a ‘@counter-style’ was defined with

‘additive-symbols: 3 "a", 2 "b":’, the algorithm defined above will fail to find a representation for a

counter value of 4, even though theoretically a "bb" representation would work. While unfortunate,
this is required to maintain the property that the algorithm runs in linear time relative to the size of

the counter value.

3.1.7. Building from Existing Counter Styles: the ‘extends’ system

The ‘extends’ system allows an author to use the algorithm of another counter style, but alter other
aspects, such as the negative sign or the suffix. If a counter style uses the ‘extends’ system, any
unspecified descriptors must be taken from the extended counter style specified, rather than taking

their initial values.

If a ‘(@counter-style’ uses the ‘extends’ system, it must not contain a ‘symbols’ or ‘additive-symbols’

descriptor, or else the ‘@counter-style’ rule is invalid.

If the specified <counter-style-name> is an ASCII case-insensitive match for ‘disc’, ‘circle’, ‘square’,

‘disclosure-open’, or ‘disclosure-closed’ (any of the predefined symbolic counter styles), using

‘extend’ extends from the “standard” definition of the rules provided in the normative stylesheet

(rather than the exception allowing them to be drawn in a different, user-agent-specific fashion.)

If the specified counter style name isn’t the name of any defined counter style, it must be treated as if

it was extending the ‘decimal’ counter style. If one or more ‘(@counter-style’ rules form a cycle with

their ‘extends’ values, all of the counter styles participating in the cycle must be treated as if they were

extending the ‘decimal’ counter style instead.

EXAMPLE 8
For example, if you wanted a counter style that was identical to decimal, but used a parenthesis

rather than a period after it, like:

1) first item
2) second item
3) third item

Rather than writing up an entirely new counter style, this can be done by just extending ‘decimal’:

@counter-style decimal-paren {
system: extends decimal;
suffix: ") ";

3.2. Formatting negative values: the ‘negative’ descriptor

Name: ‘negative’

For: ‘(@counter-style’

Value: ~ <symbol> <symbol>?

Initial: ~ "\2D" ("-" hyphen-minus)

The ‘negative’ descriptor defines how to alter the representation when the counter value is negative.

The first <symbol> in the value is prepended to the representation when the counter value is negative.
The second <symbol>, if specified, is appended to the representation when the counter value is

negative.

EXAMPLE 9

For example, specifying ‘negative: "(" ")":” will make negative values be wrapped in parentheses,

which is sometimes used in financial contexts, like "(2) (1) 0 12 3...".

Not all ‘system’ values use a negative sign. In particular, a counter style uses a negative sign if its

‘system’ value is ‘symbolic’, ‘alphabetic’, ‘numeric’, ‘additive’, or ‘extends’ if the extended counter

style itself uses a negative sign. If a counter style does not use a negative sign, it ignores the negative

sign when generating a counter representation.

3.3. Symbols before the marker: the ‘prefix’ descriptor

Name: ‘prefix’

For: ‘(@counter-style’

Value: <symbol>

Initial: """ (the empty string)

The ‘prefix’ descriptor specifies a <symbol> that is prepended to the marker representation. Prefixes
come before any negative sign.

Note: Prefixes are only added by the algorithm for constructing the default contents of the
‘::marker’ pseudo-element; the prefix is not added automatically when the ‘counter()’ or
‘counters()’ functions are used.

3.4. Symbols after the marker: the ‘suffix’ descriptor

Name: ‘suffix’

For: ‘(@counter-style’

Value: <symbol>

Initial: "\2E\20" ("." full stop followed by a space)

The ‘suffix’ descriptor specifies a <symbol> that is appended to the marker representation. Suffixes

are added to the representation after negative signs.
Note: Suffixes are only added by the algorithm for constructing the default contents of the

‘::marker’ pseudo-element; the suffix is not added automatically when the counter() or counters()

functions are used.

3.5. Limiting the counter scope: the ‘range’ descriptor

Name: ‘range’

For: ‘(@counter-style’

Value: [[<integer> | infinite]{2}]# | auto

Initial: auto

The ‘range’ descriptor defines the ranges over which the counter style is defined. If a counter style is
used to represent a counter value outside of its ranges, the counter style instead drops down to its

fallback counter style.

‘auto’
The range depends on the counter system:

e For ‘cyclic’, ‘numeric’, and ‘fixed’ systems, the range is negative infinity to positive infinity.

¢ For ‘alphabetic’ and ‘symbolic’ systems, the range is 1 to positive infinity.

e For ‘additive’ systems, the range is 0 to positive infinity.

¢ For ‘extends’ systems, the range is whatever ‘auto’ would produce for the extended system;

if extending a complex predefined style (§ 7 Complex Predefined Counter Styles), the range

is the style’s defined range.

[[<integer> | infinite |{2} |#
This defines a comma-separated list of ranges. For each individual range, the first value is the

lower bound and the second value is the upper bound. This range is inclusive - it contains both
the lower and upper bound numbers. If ‘infinite’ is used as the first value in a range, it represents
negative infinity; if used as the second value, it represents positive infinity. The range of the

counter style is the union of all the ranges defined in the list.

If the lower bound of any range is higher than the upper bound, the entire descriptor is invalid and

must be ignored.

Implementations must support ranges with a lower bound of at least -2 15 and an upper bound of at
least 21°-1 (the range of a signed 2-byte int). They may support higher ranges. If any specified bound
is outside of the implementation’s supported bounds, it must be treated as the closest bound that the

implementation does support.

3.6. Zero-Padding and Constant-Width Representations: the ‘pad’ descriptor

Name: ‘pad’

For: ‘(@counter-style’

Value: <integer [0,00]> && <symbol>

Initial: 0"

The ‘pad’ descriptor allows an author to specify a "fixed-width" counter style, where representations
shorter than the pad value are padded with a particular <symbol>. Representations larger than the

specified pad value are constructed as normal.

<integer [0,0]> && <symbol>
The <integer> specifies a minimum length that all counter representations must reach.

Let difference be the provided <integer> minus the number of grapheme clusters in the initial

representation for the counter value. | (Note that, per the algorithm to generate a counter

representation, this occurs before adding prefixes/suffixes/negatives.) | If the counter value is

negative and the counter style uses a negative sign, further reduce difference by the number of

grapheme clusters in the counter style’s ‘negative’ descriptor’s <symbol>(s).

If difference is greater than zero, prepend difference copies of the specified <symbol> to the

representation.

Negative <integer> values are not allowed.

EXAMPLE 10

The most common example of "fixed-width" numbering is zero-padded decimal numbering. If an
author knows that the numbers used will be less than a thousand, for example, it can be zero-
padded with a simple ‘pad: 3 "0";” descriptor, ensuring that all of the representations are 3 digits

wide.

This will cause, for example, 1 to be represented as "001", 20 to be represented as "020", 300 to be
represented as "300", 4000 to be represented as "4000", and -5 to be represented as "-05".

Note: The ‘pad’ descriptor counts the number of grapheme clusters in the representation, but pads

it with <symbol>s. If the specified ‘pad’ <symbol> is multi-character, this will likely not have the
desired effect. Unfortunately, there’s no way to use the number of grapheme clusters in the ‘pad’
<symbol> without violating useful constraints. It is recommended that authors only specify

<symbol>s of a single grapheme cluster in the ‘pad’ descriptor.

3.7. Defining fallback: the ‘fallback’ descriptor

Name: ‘fallback’

For: ‘(@counter-style’

Value: <counter-style-name>

Initial: decimal

The ‘fallback’ descriptor specifies a fallback counter style to be used when the current counter style
can’t create a representation for a given counter value. For example, if a counter style defined with a
range of 1-10 is asked to represent a counter value of 11, the counter value’s representation is instead
constructed with the fallback counter style (or possibly the fallback style’s fallback style, if the

fallback style can’t represent that value, etc.).

If the value of the ‘fallback’ descriptor isn’t the name of any defined counter style, the used value of
the ‘fallback’ descriptor is ‘decimal’ instead. Similarly, while following fallbacks to find a counter
style that can render the given counter value, if a loop in the specified fallbacks is detected, the
‘decimal’ style must be used instead.

Note that it is not necessarily an error to specify fallback loops. For example, if an author desires a
counter style with significantly different representations for even and odd counter values, they may
find it easiest to define one style that can only represent odd values and one that can only represent
even values, and specify each as the fallback for the other one. Though the fallback graph is
circular, at no point do you encounter a loop while following these fallbacks - every counter value

is represented by one or the other counter style.

3.8. Marker characters: the ‘symbols’ and ‘additive-symbols’ descriptors

Name: ‘symbols’

For: ‘(@counter-style’

Value: <symbol>+

Initial: n/a

Name: ‘additive-symbols’

For: ‘(@counter-style’

Value: [<integer [0,00]> && <symbol>]#

Initial: n/a

<symbol> = <string> | <image> | <custom-ident>

The ‘symbols’ and ‘additive-symbols’ descriptors specify the symbols used by the marker-

construction algorithm specified by the ‘system’ descriptor. The ‘@counter-style’ rule must have a

valid ‘symbols’ descriptor if the counter system is ‘cyclic’, ‘numeric’, ‘alphabetic’, ‘symbolic’, or

‘fixed’, or a valid ‘additive-symbols’ descriptor if the counter system is ‘additive’; otherwise, the

‘(@counter-style” does not define a counter style (but is still a valid at-rule).

Some counter systems specify that the ‘symbols’ descriptor must have at least two entries. If the
counter style’s system is such, and the ‘symbols’ descriptor has only a single entry, the ‘(@counter-
style’ rule does not define a counter style.

Each entry in the ‘symbols’ descriptor’s value defines a counter symbol, which is interpreted

differently based on the counter style’s system. Each entry in the ‘additive-symbols’ descriptor’s value

defines an additive tuple, which consists of a counter symbol and an integer weight. Each weight must

be a non-negative integer, and the additive tuples must be specified in order of strictly descending

weight; otherwise, the declaration is invalid and must be ignored.

Counter symbols may be strings, images, or identifiers, and the three types can be mixed in a single

descriptor. Counter representations are constructed by concatenating counter symbols together.
Identifiers are rendered as strings containing the same characters. Images are rendered as inline

replaced elements. The default object size of an image counter symbol is a lem by lem square.

Note: The <image> syntax in <symbol> is currently at-risk. No implementations have plans to
implement it currently, and it complicates some usages of ‘counter()’ in ways that haven’t been
fully handled.

Note: If using identifiers rather than strings to define the symbols, be aware of the syntax of
identifiers. In particular, ascii non-letters like "*" are not identifiers, and so must be quoted in a
string. Hex escapes, used in several of the counter styles defined in this specification, "eat" the
following space (to allow a digit to follow a hex escape without ambiguity), so two spaces must be
put after a hex escape to separate it from the following one, or else they’ll be considered adjacent,
and part of the same identifier. For example, ‘symbols: \660 \661:” only defines a single symbol,
consisting of the U+0660 and U+0661 characters, rather than the two that were intended; either
quote the escapes in strings, like ‘symbols: "\660" "\661"’, or put two spaces between the escapes.

3.9. Speech Synthesis: the ‘speak-as’ descriptor

Name: ‘speak-as’

For: ‘(@counter-style’

Value: auto | bullets | numbers | words | spell-out | <counter-style-name>

Initial: auto

A counter style can be constructed with a meaning that is obvious visually, but impossible to
meaningfully represent via a speech synthesizer or other non-visual means, or possible but nonsensical
when naively read out loud. The ‘speak-as’ descriptor describes how to synthesize the spoken form of
a counter formatted with the given counter style. Assistive technologies should use this spoken form
when reading out the counter style, and may use the ‘speak-as’ value to inform transformations to

outputs other than speech. Values have the following meanings:

‘auto’
If the counter style’s ‘system’ is ‘alphabetic’, this value has the same effect as ‘spell-out’. If the

‘system’ is ‘cyclic’, this value has the same effect as ‘bullets’. If the ‘system’ is ‘extends’, this

value has the same effect as ‘auto’ would have for the extended style. Otherwise, this value has

the same effect as ‘numbers’.

‘bullets’
The UA speaks a UA-defined phrase or audio cue that represents an unordered list item being
read out.

‘numbers’
The counter’s numeric value is spoken as a number in the content language.

‘words’
Generate a counter representation for the value as normal, then speak it as normal text in the

content language. If the counter representation contains images, instead handle the value as for

‘numbers’.

‘spell-out’
Generate a counter representation for the value as normal, then spell it out letter-by-letter in the

content language. If the UA does not know how to pronounce the symbols (or the counter

representation contains images), it must instead handle the value as for ‘numbers’.

For example, ‘lower-greek’ in English would be read out as "alpha", "beta", "gamma", etc.
Conversely, ‘upper-latin’ in French would be read out as (in phonetic notation) /a/, /be/, /se/, etc.

‘<counter-style-name>’
The counter’s value is instead spoken out in the specified style (similar to the behavior of the

‘fallback’ descriptor when generating representations for a counter value). If the specified style
does not exist, this value is treated as ‘auto’. If a loop is detected when following ‘speak-as’

references, this value is treated as ‘auto’ for the counter styles participating in the loop.

EXAMPLE 11

The ability to defer pronunciation to another counter style can help when the symbols being used
aren’t actually letters. For example, here’s a possible definition of a ‘circled-lower-latin’ counter-
style, using some special Unicode characters:

@counter-style circled-lower-Latin {

system: alphabetic;

speak-as: lower-latin;

symbols: @@ © D@ OO O ODWOOOOPOOEO®LYW®Y
@;

suffix: " ";

}

Setting its ‘system’ to ‘alphabetic’ would normally make the UA try to read out the names of the

characters, but in this case that might be something like "Circled Letter A", which is unlikely to

make sense. Instead, explicitly setting ‘speak-as’ to ‘lower-latin’ ensures that they get read out as

their corresponding latin letters, as intended.

4. Defining Anonymous Counter Styles: the ‘symbols()’ function

The ‘symbols()’ function allows a counter style to be defined inline in a property value, for when a

style is used only once in a stylesheet and defining a full ‘@counter-style’ rule would be overkill. It

does not provide the full feature-set of the ‘@counter-style’ rule, but provides a sufficient subset to

still be useful. The syntax of the ‘symbols()’ rule is:

symbols() = symbols(<symbols-type>? [<string> | <image>]+)
<symbols-type> = cyclic | numeric | alphabetic | symbolic | fixed

The ‘symbols()’ function defines an anonymous counter style with no name, a ‘prefix’ of “""’ (empty
string) and ‘suffix’ of " "* (U+0020 SPACE), a ‘range’ of ‘auto’, a ‘fallback’ of ‘decimal’, a
‘negative’ of *"\2D"” ("-" hyphen-minus), a ‘pad’ of ‘0 ""’, and a ‘speak-as’ of ‘auto’. The counter

style’s algorithm is constructed by consulting the previous chapter using the provided system — or

‘symbolic’ if the system was omitted — and the provided <string>s and <image>s as the value of the

‘symbols’ property. If the system is ‘fixed’, the first symbol value is ‘1°.

If the system is ‘alphabetic’ or ‘numeric’, there must be at least two <string>s or <image>s, or else the

function is invalid.

EXAMPLE 12
This code:

ol { list-style: symbols("*" "\2020" "\2021" "\A7"); }

will produce lists that look like:

* One
t Two
¥ Three
§ Four
** Five
tt Six
tf Seven

On the other hand, specifying the system of counter, like so:
ol { list-style: symbols(cyclic "*" "\2020" "\2021" "\A7"); }
will produce lists that look like:

* One
Two
Three
Four

¥ WU =+ =+

Five
Six

= —+

Seven

Note: the ‘symbols()’ function only allows strings and images, while the ‘symbols’ descriptor of a

‘(@counter-style’ rule also allows identifiers.

5. Extending ‘list-style-type’, ‘counter()’, and ‘counters()’

In CSS Level 2 [CSS21] the ‘list-style-type’ property and the ‘counter()’ and ‘counters()’ notations

accept various pre-defined keywords, each identifying a counter style. This module extends these
features to take instead the <counter-style> type, defined below:

<counter-styles> = <counter-style-name> | <symbols()>

If a <counter-style-name> is used that does not refer to any existing counter style, it must act

identically to the ‘decimal’ counter style (but does not compute to ‘decimal’).

When used in these contexts, a <counter-style-name> is a tree-scoped reference.

6. Simple Predefined Counter Styles

The following stylesheet uses the ‘(@counter-style’ rule to redefine all of the counter styles defined in
CSS 2 and CSS 2.1. This stylesheet is normative—UAs must include it in their UA stylesheet (or at

least act as if these rules were defined at that level).

6.1. Numeric: ‘decimal’, ‘decimal-leading-zero’, ‘arabic-indic’, ‘armenian’, ‘upper-
armenian’, ‘lower-armenian’, ‘bengali’, ‘cambodian’, ‘khmer’, ‘cjk-decimal’,
‘devanagari’, ‘georgian’, ‘gujarati’, ‘gurmukhi’, ‘hebrew’, ‘kannada’, ‘lao’,
‘malayalam’, ‘mongolian’, ‘myanmar’, ‘oriya’, ‘persian’, ‘lower-roman’, ‘upper-
roman’, ‘tamil’, ‘telugu’, ‘thai’, ‘tibetan’

‘decimal’
Western decimal numbers (e.g., 1, 2, 3, ..., 98, 99, 100).

‘decimal-leading-zero’
Decimal numbers padded by initial zeros (e.g., 01, 02, 03, ..., 98, 99, 100).

‘arabic-indic’
Arabic-indic numbering (e.g., ', ¥, ¥, £, ..., A, 38100,

‘armenian’
‘upper-armenian’
Traditional uppercase Armenian numbering (e.g., U, B, Q. ..., 1., L[, B).

‘lower-armenian’
Lowercase Armenian numbering (e.g., w, p, q, ..., N, NP, 6).

‘bengali’
Bengali numbering (e.g., 3, R, 9, ..., b, o, Y00).

‘cambodian’
‘khmer’

Cambodian/Khmer numbering (e.g., ©, 8, M, ..., 86, 86, 900),

‘cjk-decimal’

Han decimal numbers (e.g., —, —, =, ..., 7L/\, 71JL, —OO).

‘devanagari’
devanagari numbering (e.g., %, R, 3, ..., R¢, {R, R00),

‘georgian’
Traditional Georgian numbering (€.g., 9, 9, @, ..., J&, g0, ®).

‘eujarati’
Gujarati numbering (e.g., 1, 2, 3, ..., ¢¢, ¢, 100).

‘surmukhi’
Gurmukhi numbering (e.g., Q, R, 3, ..., €L, €€, 200).

‘hebrew’
Traditional Hebrew numbering (e.g., X, 2, 3, ..., 11X, VX, P).

‘kannada’
Kannada numbering (e.g., O, 9, &, ..., €5, €€, 00O0).

‘lao’
Laotian numbering (e.g., @, ¢, 9, ..., VY, VW, HOO).

‘malayalam’

Malayalam numbering (e.g., O, (0, ("L, ..., (T80__J, (T3(T8, Loo).

‘mongolian’
Mongolian numbering (e.g., I, 2,7, ..., 8, & (00),

‘myanmar’
Myanmar (Burmese) numbering (e.g., 3, [Qs - B BR> 200).

‘oriya’
Oriya numbering (e.g., €, 9, €1, ..., AT, A¢, R0O).

‘persian’
Persian numbering (e.g., ', ¥, ¥, ¥, .., A, 43 Vo),

‘lower-roman’
Lowercase ASCII Roman numerals (e.g., 1, ii, 1ii, ..., XCViii, XCiX, C).

‘upper-roman’
Uppercase ASCII Roman numerals (e.g., I, II, I1I, ..., XCVIII, XCIX, C).

‘tamil’
Tamil numbering (e.g., &, &, M, ..., Fo 9|, Fodwn, 500).

‘telugu’
Telugu numbering (e.g., O, 9, 3, ..., €0, £, O00).

‘thai’
Thai (Siamese) numbering (e.g., @, v, o, ..., G, &', ®@00).

‘tibetan’
Tibetan numbering (€.g., 7, 3, 3 --» (4 (5 7°°)-

The following stylesheet fragment provides the normative definition of these predefined counter

styles:

@counter-style decimal {
system: numeric;
Symbols: I@I lll 12l I3l I4I I5I I6l l7l I8l I9l;

@counter-style decimal-leading-zero {
system: extends decimal;
pad: 2 '0';

@counter-style arabic-indic {
system: numeric;
symbols: "\660" "\661" "\662" "\663" "\664" "\665" "\666" "\667" "\668" "\669";
/¥ - VY ¥ EO0TVAAQ ¥

@counter-style armenian {

system: additive;

range: 1 9999;

additive-symbols: 9000 \554, 8000 \553, 7000 \552, 6000 \551, 5000 \550, 4000
\54F, 3000 \54E, 2000 \54D, 1000 \54C, 900 \54B, 800 \54A, 700 \549, 600 \548, 500
\547, 400 \546, 300 \545, 200 \544, 100 \543, 90 \542, 80 \541, 70 \540, 60 \53F,
50 \53E, 40 \53D, 30 \53C, 20 \53B, 10 \53A, 9 \539, 8 \538, 7 \537, 6 \536, 5
\535, 4 \534, 3 \533, 2 \532, 1 \531;

/* 9000 2, 8000 O, 7000 I, 6000 S, 5000 I, 4000 S, 3000 4, 2000 U, 1000 N, 900 9,
800 M, 700 2, 600 N, 500 T, 400 L, 300 3, 200 U, 100 i, 990 1, 89 2, 70 3, 60 U, 50
o, 40, 30 L, 200, 104, 9@, 8L, 7E, 62, 56, 41, 3Q, 2F, 1U*

}

@counter-style upper-armenian {
system: extends armenian;

@counter-style lower-armenian {

system: additive;

range: 1 9999;

additive-symbols: 9000 "\584", 8000 "\583", 7000 "\582", 6000 "\581", 5000
"\580", 4000 "\57F", 3000 "\57E", 2000 "\57D", 1000 "\57C", 900 "\57B", 800 "\57A",
700 "\579", 600 "\578", 500 "\577", 400 "\576", 300 "\575", 200 "\574", 100 "\573",
90 "\572", 80 "\571", 70 "\570", 60 "\56F", 50 "\56E", 40 "\56D", 30 "\56C", 20
"\56B", 10 "\56A", 9 "\569", 8 "\568", 7 "\567", 6 "\566", 5 "\565", 4 "\564", 3
"\563", 2 "\562", 1 "\561";

/* 9000 p, 8000 h, 7000 L, 6000 g, 5000 n, 4000 ;n, 3000 Y, 2000 u, 1000 n, 900 9,

800 u, 700 y, 600 n, 500 2, 400 U, 300 j, 200 U, 100 6, 90 n, 82 &4, 70 h, 60 |, 50
o, 40 v, 36 |, 206 h, 106d, 9p, 8n, 7E, 6q, 56, 4n,3q, 2p, Lu*
b

@counter-style bengali {
system: numeric;
symbols: "\9E6" "\9E7" "\9E8" "\9E9" "\9EA" "\9EB" "\9EC" "\9ED" "\9EE" "\9EF";
/¥0 598 &WVWAaAbL

@counter-style cambodian {
system: numeric;
symbols: "\17E@" "\17E1" "\17E2" "\17E3" "\17E4" "\17E5" "\17E6" "\17E7" "\17E8"

n \17E9";
/¥ 09 B Me®o a8 *x

@counter-style khmer {
system: extends cambodian;

@counter-style cjk-decimal {
system: numeric;
range: @ infinite;
symbols: \3007 \4E00 \4E8C \4E09 \56DB \4E94 \516D \4E03 \516B \4ES5D;
/¥ O—Z=ZMmHNELI/IN*
suffix: "\3001";
VAN

@counter-style devanagari {
system: numeric;
symbols: "\966" "\967" "\968" "\969" "\96A" "\96B" "\96C" "\96D" "\96E" "\96F";
/¥ 03RRI YUK LR ¥

@counter-style georgian {

system: additive;

range: 1 19999;

additive-symbols: 10000 \10F5, 9000 \10F0, 8000 \10EF, 7000 \10F4, 6000 \1OEE,
5000 \10ED, 4000 \10EC, 3000 \10EB, 2000 \10EA, 1000 \10E9, 900 \10E8, 800 \10E7,
700 \10E6, 600 \10E5, 500 \10E4, 400 \10F3, 300 \10E2, 200 \10E1l, 100 \10EQ, 90
\10DF, 80 \10DE, 70 \10DD, 60 \10F2, 50 \10DC, 40 \10DB, 30 \10DA, 20 \10D9, 10

\10D8, 9 \10D7, 8 \10F1l, 7 \16D6, 6 \10D5, 5 \10D4, 4 \1eD3, 3 \1eD2, 2 \1ep1, 1
\10D0;

/* 10000 3, 9000 3, 3000 §, 7000 g, 6000 b, 5000 &, 4000 G, 3000 d, 2000 (3, 1000
B, 900 3, 800 y, 700 m, 600 J, 500 @, 460 3, 300 (), 200 L, 100 O, 90 3, 80 3, 70
m, 60 Q, 50 b, 400, 30 o, 20 3, 1860, 9w, 83, 706, 63,59, 40p, 33, 20,1
o */

}

@counter-style gujarati {
system: numeric;
symbols: "\AE6" "\AE7" "\AE8" "\AE9" "\AEA" "\AEB" "\AEC" "\AED" "\AEE" "\AEF";
/¥01R3¥US I L *

@counter-style gurmukhi {
system: numeric;
symbols: "\A66" "\A67" "\A68" "\A69" "\A6A" "\A6B" "\A6C" "\A6D" "\A6E" "\A6F";
/0933 8YE9 T

@counter-style hebrew {

system: additive;

range: 1 10999;

additive-symbols: 10000 \5D9\5F3, 9000 \5D8\5F3, 8000 \5D7\5F3, 7000 \5D6\5F3,
6000 \5D5\5F3, 5000 \5D4\5F3, 4000 \5D3\5F3, 3000 \5D2\5F3, 2000 \5D1\5F3, 1000
\5DO\5F3, 400 \5EA, 300 \5E9, 200 \S5E8, 100 \5E7, 90 \5E6, 80 \5E4, 70 \5E2, 60
\5E1, 50 \5E@, 40 \5DE, 3@ \5DC, 20 \5DB, 19 \5D9\5D8, 18 \5D9\5D7, 17 \5D9\5D6, 16
\5D8\5D6, 15 \5D8\5D5, 10 \5D9, 9 \5D8, 8 \5D7, 7 \5D6, 6 \5D5, 5 \5D4, 4 \5D3, 3
\5D2, 2 \5D1, 1 \5D9;

/* 10000 >, 9000 v, 8000 n', 7000 T, 6000 Y, 5000 I, 4000 T, 3000 ¥, 2000 1, 1000
X', 400 n, 300 w, 200 0, 100 p, 90 ¥, 89 5, 70 v, 60 D, 50 1, 40 n, 30 2, 20 5, 19 v,
18 n, 17 1, 16 v1, 15w, 10°, 9 v, 81, 71, 61, 517, 47, 33, 213, 1K */

/* This system manually specifies the values for 19-15 to force the correct
display of 15 and 16, which are commonly rewritten to avoid a close resemblance to
the Tetragrammaton. */

/* Implementations MAY choose to implement this manually to a higher range; see
note below. */

}

@counter-style kannada {
system: numeric;
symbols: "\CE6" "\CE7" "\CE8" "\CE9" "\CEA" "\CEB" "\CEC" "\CED" "\CEE" "\CEF";
/0092 ¥ Be2 S e *

@counter-style lao {
system: numeric;
symbols: "\ED@" "\ED1" "\ED2" "\ED3" "\ED4" "\ED5" "\ED6" "\ED7"
/foeoddDeEaecdngow*

@counter-style malayalam {
system: numeric;
symbols: "\D66" "\D67" "\D68" "\D69" "\D6A" "\D6B" "\D6C" "\D6D"
/o DL ML B@ 0N 9 QY M@ */

@counter-style mongolian {
system: numeric;
symbols: "\1810" "\1811" "\1812" "\1813" "\1814" "\1815" "\1816"

n \1819";
/¥ 006l x/

@counter-style myanmar {

system: numeric;

symbols: "\1040" "\1041" "\1e42" "\1043" "\1e44" "\1e45" "\1e46"
"\1049";

/f00JR598q0g "
}

@counter-style oriya {
system: numeric;
symbols: "\B66" "\B67" "\B68" "\B69" "\B6A" "\B6B" "\B6C" "\B6D"
/¥o9IeNY¥ §9 9O L *

@counter-style persian {
system: numeric;
symbols: "\6F@" "\6F1" "\6F2" "\6F3" "\6F4" "\6F5" "\6F6" "\6F7"
/¥ VY Y EOSV AR

@counter-style lower-roman {
system: additive;
range: 1 3999;

l|\ED8|| "\ED9";

II\D6EII "\D6F";

"\1817" "\1818"

"\1047" "\1048"

II\B6EII "\B6F";

"\6F8" "\6F9";

additive-symbols: 1000 m, 900 cm, 500 d, 400 cd, 100 c, 90 xc, 50 1, 40 x1, 10 x,

9 ix, 5 v, 4 iv, 1 1i;

}

@counter-style upper-roman {
system: additive;
range: 1 3999;

additive-symbols: 1000 M, 900 CM, 500 D, 400 CD, 100 C, 90 XC, 50 L, 40

9 IX, 5V, 4 IV, 1 I;

@counter-style tamil {
system: numeric;
symbols: "\BE6" "\BE7" "\BE8" "\BE9"
/¥*0 & o | & @ & 6 9 Fon */

@counter-style telugu {
system: numeric;
symbols: "\C66" "\C67" "\C68" "\C69"
/¥O0O 3@ R E20EFE X

@counter-style thai {
system: numeric;
symbols: "\E50" "\E51" "\E52" "\E53"
/[*oebondddoaadw *

@counter-style tibetan {
system: numeric;
symbols: "\F20" "\F21" "\F22" "\F23"
/ey sqtd ¥/

}

H\BEA"

"\CGA"

"\E54"

"\F24"

H\BEBH

"\CGB"

"\E55H

"\F25"

H\BECH

"\C6C"

“\E56"

"\F26"

H\BEDH

"\C6D"

"\E57"

"\F27"

H\BEEH

"\C6E"

H\E58n

"\F28"

XL, 10 X,

"\BEF";

"\C6F";

“\E59";

"\F29";

Implementations must implement ‘hebrew’ at least to the range specified in the ‘@counter-style’ rule

above, but may implement it to a higher range. If they do so, the corresponding ‘range’ descriptor

must reflect the implemented range.

6.2. Alphabetic: ‘lower-alpha’, ‘lower-latin’, ‘upper-alpha’, ‘upper-latin’, ‘lower-

greek’, ‘hiragana’, ‘hiragana-iroha’, ‘katakana’, ‘katakana-iroha’

‘lower-alpha’
‘lower-latin’
Lowercase ASCII letters (e.g., a, b, c, ..., z, aa, ab).

‘upper-alpha’
‘upper-latin’
Uppercase ASCII letters (e.g., A, B, C, ..., Z, AA, AB).

‘lower-greek’
Lowercase classical Greek (e.g., a, B, v, ..., ®, aq, af}).

‘hiragana’
Dictionary-order hiragana lettering (e.g., &, \\, 2, ..., A, Hd, H).

‘hiragana-iroha’

Iroha-order hiragana lettering (e.g., LN, A, (&, ..., 97, LiLy, LW A),
‘katakana’

Dictionary-order katakana lettering (e.g., 77, 1, 7, ..., >, 77, 7 4).

‘katakana-iroha’
Iroha-order katakana lettering (e.g., 1, A, /N, ., X, 4 1, 4 A)

The following stylesheet fragment provides the normative definition of these predefined counter

styles:

@counter-style lower-alpha {
system: alphabetic;
symbols: abcdefghijklmnopgrstuvwxy z;

@counter-style lower-latin {
system: extends lower-alpha;

@counter-style upper-alpha {
system: alphabetic;
symbols: ABCDEFGHIIJKLMNOPQRSTUVWNWXY Z;

@counter-style upper-latin {
system: extends upper-alpha;

@counter-style lower-greek {
system: alphabetic;
SymbOlS: ||\3Bln |l\382|| ll\3B3ll "\3B4" ll\3B5ll ||\3B6|| "\357" "\388" "\3B9" ||\3BA||

II\BBBII II\BBCII II\BBD" ll\BBEII II\BBFII Il\3cell Il\3c1ll Il\3c3|l ll\3c4ll "\3C5" Il\3c6ll ll\3c7ll
"\3C8" "\3(C9";
/¥aBydeldnbObi1kApvEonpotuodyxvw*/

@counter-style hiragana {

system: alphabetic;

symbols: "\3042" "\3044" "\3046" "\3048" "\304A" "\304B" "\304D" "\304F" "\3051"
"\3053" "\3055" "\3057" "\3059" "\305B" "\305D" "\305F" "\3061" "\3064" "\3066"
"\3068" "\306A" "\306B" "\306C" "\306D" "\306E" "\306F" "\3072" "\3075" "\3078"
"\307B" "\307E" "\307F" "\3080" "\3081" "\3082" "\3084" "\3086" "\3088" "\3089"
"\308A" "\308B" "\308C" "\308D" "\308F" "\3090" "\3091" "\3092" "\3093";

/¥H WD B ETLC T LT EEALE DT LELGITHRDIE DS
NIEFFEFARALO®DOR LY DZNAS D AR E A K

suffix: ", ";

@counter-style hiragana-iroha {

system: alphabetic;

symbols: "\3044" "\308D" "\306F" "\306B" "\307B" "\3078" "\3068" "\3061" "\308A"
"\306C" "\308B" "\3092" "\308F" "\304B" "\3088" "\305F" "\308C" "\305D" "\3064"
"\306D" "\306A" "\3089" "\3080" "\3046" "\3090" "\306E" "\304A" "\304F" "\3084"
"\307E" "\3051" "\3075" "\3053" "\3048" "\3066" "\3042" "\3055" "\304D" "\3086"
"\3081" "\307F" "\3057" "\3091" "\3072" "\3082" "\305B" "\3059";

/¥ WA T EA~NEDBD Y BB b DOD>RGE L S ADBL
P EFTSIIRATHI ERDOLHHLRZRODHHE T ¥

suffix: ", ";

@counter-style katakana {

system: alphabetic;

symbols: "\30A2" "\30A4" "\30A6" "\30A8" "\30AA" "\30AB" "\30AD" "\30AF" "\30B1"
"\30B3" "\30B5" "\30B7" "\30B9" "\30BB" "\30BD" "\30BF" "\30C1" "\30C4" "\30C6"
"\30C8" "\30CA" "\30CB" "\30CC" "\30CD" "\30CE" "\30CF" "\30D2" "\3eD5" "\30D8"
"\30DB" "\3@DE" "\3@DF" "\30EQ" "\30E1" "\30E2" "\30E4" "\30E6" "\30E8" "\30E9"
"\30EA" "\30EB" "\30EC" "\30ED" "\3OEF" "\30F0" "\30F1" "\30F2" "\30F3";

/¥ 7 A4 v T HF A X2y ALY RFY T MNFZDXx /S NE T
NFE Y I LA EANYDIIZYLLA T G T T R

suffix: ", ";

@counter-style katakana-iroha {
system: alphabetic;

symbols: "\3@0A4" "\30ED" "\30CF" "\30CB" "\30DB" "\30D8" "\30C8" "\30C1" "\30EA"
"\30CC" "\3@EB" "\30F2" "\30EF" "\30AB" "\30E8" "\3@0BF" "\30EC" "\30BD" "\30C4"
"\30CD" "\30CA" "\30E9" "\30E@" "\30A6" "\30F0" "\30CE" "\30AA" "\30AF" "\30E4"
"\30DE" "\30B1" "\3@eD5" "\30B3" "\30A8" "\30C6" "\30A2" "\30B5" "\30AD" "\30E6"
"\30E1" "\3@DF" "\30B7" "\30F1" "\30D2" "\30E2" "\30BB" "\30B9";

/¥4 B NZFx A~ bFUXVLITTHIERLYYRFT T LTFESFT
Y~ 7 3T 577 Y F 1 X I Tk EAELRFH

suffix: ", ";

6.3. Symbolic: ‘disc’, ‘circle’, ‘square’, ‘disclosure-open’, ‘disclosure-closed’

‘disc’
A filled circle, similar to « U+2022 BULLET.

‘circle’
A hollow circle, similar to - U+25E6 WHITE BULLET.

‘square’
A filled square, similar to = U+25AA BLACK SMALL SQUARE.

‘disclosure-open’
‘disclosure-closed’

Symbols appropriate for indicating an open or closed disclosure widget, such as the HTML

<details> element.

The following stylesheet fragment provides the normative definition of these predefined counter

styles:

@counter-style disc {
system: cyclic;
symbols: \2022;

/* e */

suffix: K

@counter-style circle {
system: cyclic;
symbols: \25E6;

/% e */

suffix: ;

@counter-style square {

system: cyclic;
symbols: \25AA;
/* = */

non

suffix: K

@counter-style disclosure-open {
system: cyclic;
suffix: " ";
/* for symbols, see normative text below */

}

@counter-style disclosure-closed {
system: cyclic;
suffix: " ";
/* for symbols, see normative text below */

}

When used in ‘list-style-type’, a UA may instead render these styles using a UA-generated image or a

UA-chosen font instead of rendering the specified character in the element’s own font. If using an

image, it must look similar to the character, and must be sized to attractively fill a lem by lem square.

For the ‘disclosure-open’ and ‘disclosure-closed’ counter styles, the marker must be an image or
character suitable for indicating the open and closed states of a disclosure widget, such as HTML’s
<details> element. If the image is directional, it must respond to the writing mode of the element,
similar to the bidi-sensitive images feature of the Images 4 module. For example, the ‘disclosure-
closed’ style might use the characters U+25B8 BLACK RIGHT-POINTING SMALL TRIANGLE (*)
and U+25C2 BLACK LEFT-POINTING SMALL TRIANGLE (<), while the ‘disclosure-open’ style
might use the character U+25BE BLACK DOWN-POINTING SMALL TRIANGLE (7).

6.4. Fixed: ‘cjk-earthly-branch’, ‘cjk-heavenly-stem’

‘cjk-earthly-branch’
Han "Earthly Branch" ordinals (e.g., %, H, &, ...,).

9 — =

‘cjk-heavenly-stem’
Han "Heavenly Stem" ordinals (e.g., B, &, &, ..., &)

The following stylesheet fragment provides the normative definition of these predefined counter
styles:

@counter-style cjk-earthly-branch {

system: fixed;

symbols: "\5B50" "\4E11" "\5BC5" "\536F" "\8FBO" "\5DF3" "\5348" "\672A" "\7533"
"\9149" "\620C" "\4EA5";

/*FHEINREFRBERKZ ¥

suffix: ", ";

@counter-style cjk-heavenly-stem {

system: fixed;

symbols: "\7532" "\4E59" "\4E19" "\4EQ1" "\620A" "\S5DF1" "\5E9A" "\8F9B" "\58EC"
"\7678";

/*BZATKCSEFEX*

suffix: ", ";

7. Complex Predefined Counter Styles

While authors may define their own counter styles using the ‘(@counter-style’ rule or rely on the set of
predefined counter styles, a few counter styles are described by rules that are too complex to be

captured by the predefined algorithms. These counter styles are described in this section.

Some of the counter styles specified in this section have custom algorithms for generating counter

values, but are otherwise identical to a counter style defined via the ‘@counter-style’ rule. For

example, an author can reference one of these styles in an ‘extends’ system, reusing the algorithm but

swapping out some of the other descriptors.

All of the counter styles defined in this section have a ‘spoken form’ of ‘numbers’, and use a negative

sign.

7.1. Longhand East Asian Counter Styles

Chinese, Japanese, and Korean have counter styles which have a “longhand” nature, similar to
“thirteen thousand one hundred and twenty-three” in English. Each has both formal and informal
variants. The formal styles are typically used in financial and legal documents, as their characters are

more difficult to alter into each other.

EXAMPLE 13

The following table shows examples of these styles, particularly some ways in which they differ.

Counter
Stvl 0 1 2 3 10 11 99 100 101 6001
yle
i X
‘japanese- _ _ + [=] T
] @) — _ = + + =]
informal’ - - —
S yIh
= ==
‘japanese- = = = & B 4a s B 7\
R = =) Et 2 A fl:lzl }I:l B —=
formal ia = 1 = == =
= =
‘korean- ol E ™ ol E 2 X
hangul- A = o] o E, s = EH & IT -
A " o
formal’ = Qo - B & =
‘korean- u .
S = - — + B T
anja- = — = + . + =] _ _
informal’ u
‘korean- = = L = = NE
hanja- T = & 2 o #B # ; I
formal’ a = u = =
‘simp- L _ .
. - + - B3 ~F
chinese- = — = + . + =] = T
informal’ 7 _
bi = = = s B s ga = = BT
chinese- = = n = A = A 1@ ‘.gg ‘Eéé:':‘l:
formal’ 3 = IR = =
=
‘trad- " _
ctrad- o - B AF
chinese- g - Z = + t + = = ;;:_
informal’ f N

Counter
0 1 2 K] 10 11 99 100 101 6001

Style
‘trad- _ = 7 _ = .
chinese = = = £ = A A = 5] T
formal’ H = 7 =

=

Because opinions differ on how best to represent numbers 10k or greater using the longhand CJK
styles, all of the counter styles defined in this section are defined to have a range of -9999 to 9999, but

implementations may support a larger range. Outside the implementation-supported range, the fallback

is ‘cjk-decimal’.

Note: Implementations are encouraged to research and implement counter representations beyond
10k and report back to the CSS Working Group with data when a generally-accepted answer is

discovered. Some previous research on this topic is contained in an earlier draft.

7.1.1. Japanese: ‘japanese-informal’ and ‘japanese-formal’

‘japanese-informal’
Informal Japanese Kanji numbering (e.g., TH+—)

‘japanese-formal’
Formal Japanese Kanji numbering (e.g. EM =R SaT

@counter-style japanese-informal {

system: additive;

range: -9999 9999;

additive-symbols: 9000 \4E5D\5343, 8000 \516B\5343, 7000 \4E03\5343, 6000
\516D\5343, 5000 \4E94\5343, 4000 \56DB\5343, 3000 \4EQ9\5343, 2000 \4E8C\5343,
1000 \5343, 900 \4E5D\767E, 800 \516B\767E, 700 \4E03\767E, 600 \516D\767E, 500
\4E94\767E, 400 \56DB\767E, 300 \4E@9\767E, 200 \4E8C\767E, 100 \767E, 90
\4E5D\5341, 80 \516B\5341, 70 \4E@3\5341, 60 \516D\5341, 50 \4E94\5341, 40
\56DB\5341, 30 \4E@9\5341, 20 \4E8C\5341, 10 \5341, 9 \4E5D, 8 \516B, 7 \4E@3, 6
\516D, 5 \4E94, 4 \56DB, 3 \4EQ9, 2 \4E8C, 1 \4Ee0, 0 \3007;

/* 9000 S, F, 8000 /\F, 7000 tF, 6000 7;<F, 5000 AT, 4000 PUF, 3000 =7,
2000 —F, 1000 T, 900 JLEH, 800 /\H, 700 tH, 600 /~H, 500 HH, 400 IUH, 300 =
B, 200 _H, 100 H, 90 S+, 80 /\+, 76 t+, 60 /x+, 50 A+, 40 O+, 30 =+,
20 "+, 10+, 9 N, 8/, 7t,67,5H,4M0,3=,2=,1—, 00 *

suffix: '\3001';

/* o *

negative: "\30DE\30A4\30CA\30B9";
/¥ XA TR */

fallback: cjk-decimal;

@counter-style japanese-formal {

system: additive;

range: -9999 9999;

additive-symbols: 9000 \4E5D\9621, 8000 \516B\9621, 7000 \4E03\9621, 6000
\516D\9621, 5000 \4FBD\9621, 4000 \56DB\9621, 3000 \53C2\9621, 2000 \5F10\9621,
1000 \58F1\9621, 900 \4E5D\767E, 800 \516B\767E, 700 \4E03\767E, 600 \516D\767E,
500 \4FOD\767E, 400 \56DB\767E, 300 \53C2\767E, 200 \5F10\767E, 100 \58F1\767E, 90
\4E5D\62FE, 80 \516B\62FE, 70 \4E03\62FE, 60 \516D\62FE, 50 \4FOD\62FE, 40
\56DB\62FE, 30 \53C2\62FE, 20 \5F10\62FE, 10 \58F1\62FE, 9 \4E5D, 8 \516B, 7 \4E03,
6 \516D, 5 \4FoD, 4 \56DB, 3 \53C2, 2 \5F10, 1 \58F1, @ \96F6;

/* 9000 SfLFF, 8000 J\FF, 7000 LT, 6000 ;<FF, 5000 {HFF, 4000 PUFF, 3000 ZfF,
2000 =X[F, 1000 ST, 900 SLH, 800 /\H, 700 tH, 600 7~H, 500 {HE, 400 PUH, 300
£H, 200 XH, 100 TH, 9 fli5, 80 /\IG, 70 Lig, 60 7i5, 50 {hiG, 40 Mg, 30 &
5, 20 X35, 10 &8, 9oL, 8\, 7L, 67N, 51, 4, 35,2, 15, 0o & */

suffix: '\3001';

/* o *
negative: "\30DE\30A4\30CA\30B9";
/* A F R */
fallback: cjk-decimal;
}

7.1.2. Korean: ‘korean-hangul-formal’, ‘korean-hanja-informal’, and ‘korean-hanja-formal’

‘korean-hangul-formal’

Korean Hangul numbering (e.g., &7 2 EH 241 2l

‘korean-hanja-informal’
Informal Korean Hanja numbering (e.g., FEH+—)

‘korean-hanja-formal’
Formal Korean Han (Hanja) numbering (e.g., S(F=H=ia=)

@counter-style korean-hangul-formal {

system: additive;

range: -9999 9999;

additive-symbols: 9000 \AD6C\CC9C, 8000 \D314\CC9C, 7000 \CE60\CCOC, 6000
\C721\CC9C, 5000 \C624\CCOC, 4000 \COAC\CCOC, 3000 \COBC\CCOC, 2000 \C774\CCOC,
1000 \C77C\CC9C, 900 \AD6C\BC31, 800 \D314\BC31, 700 \CE60\BC31, 600 \C721\BC31,

500 \C624\BC31, 400 \COAC\BC31, 300 \COBC\BC31, 200 \C774\BC31, 100 \C77C\BC31, 90
\AD6C\C2ED, 80 \D314\C2ED, 70 \CE6@\C2ED, 60 \C721\C2ED, 50 \C624\C2ED, 40
\COAC\C2ED, 30 \COBC\C2ED, 20 \C774\C2ED, 1@ \C77C\C2ED, 9 \AD6C, 8 \D314, 7 \CE60,
6 \C721, 5 \C624, 4 \COAC, 3 \COBC, 2 \C774, 1 \C77C, 0 \C601;

/* 9000 71X, 8000 EH, 7000 M, 6000 X, see0 2H, 4000 AN, 3000 A,
2000 O|X, 1000 2™, ooo T, g00 TEH 700 EH coo S, 5op 2 400 AtH, 300
ArEH D 200 O|HH) 100 UHH) 9o T4, 80 A, 70 N, 60 S, 50 24, 40 Atd, 30 &
A, 20 O|&f, 10 €&, 9o #, 8 ZH, 7 &, 6 F,52, 4A,L 34,20,1¢, 09 *

suffix: ', ';

negative: "\B9C8\C774\B108\C2A4 ";

/* OFO|L{A (followed by a space) */

@counter-style korean-hanja-informal {

system: additive;

range: -9999 9999;

additive-symbols: 9000 \4E5D\5343, 8000 \516B\5343, 7000 \4E03\5343, 6000
\516D\5343, 5000 \4E94\5343, 4000 \56DB\5343, 3000 \4E09\5343, 2000 \4E8C\5343,
1000 \5343, 900 \4E5D\767E, 800 \516B\767E, 700 \4E03\767E, 600 \516D\767E, 500
\4E94\767E, 400 \56DB\767E, 300 \4EQ9\767E, 200 \4E8C\767E, 100 \767E, 90
\4E5D\5341, 80 \516B\5341, 70 \4E@3\5341, 60 \516D\5341, 50 \4E94\5341, 40
\56DB\5341, 30 \4E@9\5341, 20 \4E8C\5341, 10 \5341, 9 \4E5D, 8 \516B, 7 \4E03, 6
\516D, 5 \4E94, 4 \56DB, 3 \4EQ9, 2 \4E8C, 1 \4E00Q, O \96F6;

/* 9000 ST, 8000 /\F, 7000 tF, 6000 7<F, 5000 HF, 4000 [UF, 3000 =T,
2000 —F, 1000 F, 900 SLEH, 800 /\H, 700 tH, 600 ;5H, 500 AE, 400 [UH, 300 =
H, 200 _H, 100 #H, 90 N+, 8 /\+, 76 t+, 60 7xt+, 50 A+, 40 O+, 30 =+,
20 _t+,10+,9H,8/)\,7t,67,,5H, 40, 3=,2_,1—,0Fx*

suffix: ', ';

negative: "\B9C8\C774\B108\C2A4 “;

/* OFO|L{A (followed by a space) */

@counter-style korean-hanja-formal {

system: additive;

range: -9999 9999;

additive-symbols: 9000 \4ES5D\4EDF, 8000 \516B\4EDF, 7000 \4E@3\4EDF, 6000
\516D\4EDF, 5000 \4E94\4EDF, 4000 \56DB\4EDF, 3000 \53C3\4EDF, 2000 \8CB3\4EDF,
1000 \58F9\4EDF, 900 \4E5D\767E, 800 \516B\767E, 700 \4E03\767E, 600 \516D\767E,
500 \4E94\767E, 400 \56DB\767E, 300 \53C3\767E, 200 \8CB3\767E, 100 \58F9\767E, 90
\4E5D\62FE, 80 \516B\62FE, 70 \4E03\62FE, 60 \516D\62FE, 50 \4E94\62FE, 40
\56DB\62FE, 30 \53C3\62FE, 20 \8CB3\62FE, 10 \58F9\62FE, 9 \4E5D, 8 \516B, 7 \4E03,
6 \516D, 5 \4E94, 4 \56DB, 3 \53C3, 2 \8CB3, 1 \58F9, O \96F6;

/* 9000 FLIF, 8000 /\{F, 7000 +IF, 6000 7<{F, 5000 FfF, 4000 PU{F, 3000 2T,

2000 BU{F, 1000 ={F, 900 NLH, 800 /\H, 700 tH, 600 7 H, 500 HE, 400 PUH, 300
215, 200 AlH, 100 =H, 90 /45, 80 /\I5, 70 TG, 60 /\I5, 50 hi5, 40 [UiG, 30 2
4, 20 B8, 10 =18, 9 ML, 8)\, 7, 67N, 5H, 4, 3%, 28, 15, 0 F */

suffix: ', ';

negative: "\B9C8\C774\B108\C2A4 ";

/* ORO|L{A (followed by a space) */

}

7.1.3. Chinese: ‘simp-chinese-informal’, ‘simp-chinese-formal’, ‘trad-chinese-informal’, and
‘trad-chinese-formal’

‘simp-chinese-informal’

Simplified Chinese informal numbering (e.g., —F—H—1+—)
‘simp-chinese-formal’

Simplified Chinese formal numbering (e.g. S{(F=AE=IEE

‘trad-chinese-informal’
Traditional Chinese informal numbering (e.g., —F—B—1+—)

‘trad-chinese-formal’

Traditional Chinese formal numbering (e.g., S ={A=a=

‘cjk-ideographic’

This counter style is identical to ‘trad-chinese-informal’. (It exists for legacy reasons.)

The Chinese longhand styles are defined by almost identical algorithms (specified as a single
algorithm here, with the differences called out when relevant), but use different sets of characters, as
specified by the table following the algorithm.

1. If the counter value is 0, the representation is the character for 0 specified for the given counter
style. Skip the rest of this algorithm.

2. Initially represent the counter value as a decimal number. For each digit that is not 0, append the
appropriate digit marker to the digit. The ones digit has no marker.

3. For the informal styles, if the counter value is between ten and nineteen, remove the tens digit

(leave the digit marker).
4. Drop any trailing zeros and collapse any remaining zeros into a single zero digit.
5. Replace the digits 0-9 with the appropriate character for the given counter style. Return the

resultant string as the representation of the counter value.

For all of these counter styles, the ‘suffix’ is ", " U+3001, the ‘fallback’ is ‘cjk-decimal’, the ‘range’
1s ©-9999 9999°, and the ‘negative’ value is given in the table of symbols for each style.

The following tables define the characters used in these styles:

Codepoints
simp-
Values simp-chinese- ' . P trad-chinese- trad-chinese-
chinese-
informal informal formal
formal
Digit 0 ZF U+96F6 2 U+96F6 2 U+96F6 2 U+96F6
Digit 1 — U+4E00 = U+58F9 — U+4E00 = U+58F9
Digit 2 — UH4E8C & U+8D30 — U+4E8C & U+8CB3
Digit 3 = U+4E09 £ U+53C1 = U+4E09 2 U+53C3
Digit 4 U+56DB EE U+8086 PQ U+56DB E2 U+8086
Digit 5 F1 U+4E9%4 {f U+4F0D 1 U+4E94 {f U+4F0D
Digit 6 75 U+516D [U+9646 75 U+516D f&s U+9678
Digit 7 + U+4E03 8 U+67D2 + U+4E03 ZE U+67D2
Digit 8 J\U+516B 18 U+634C J\U+516B 18] U+634C
Digit 9 J1 U+4E5D IZ U+7396 1 U+4E5D IZ U+7396
Tens Digit
5 + U+5341 ¥4 U+62FE + U+5341 ¥4 U+62FE
Marker
Hundreds Digit
& B U+767E {8 U+4F70 B U+767E {8 U+4F70
Marker
Thousands Digit
B Fu+ssas fFUHEDF TF U+5343 {F U+4EDF
Marker
Negative Sign A U+8DIF U+8DIF & U+8CA0 & U+8CA0

For reference, here are the first 120 values for the ‘simp-chinese-informal’ style:

1 — 41 +— 81 J\+—

2 - 42 += 82 ANy i

3 = 43 m+= 83 J\+=

4 g 44 P9+-PY 84 J\+Y

5 R 45 m+fH 85 J\+H

6 7N 46 O+75 86 I\t~

7 +t 47 m++ 87 I\t

8 J\ 48 Pg+/\ 88 I\t

9 L 49 U+A 89 I\t
10 + 50 i+ 90 i+
11 +— 51 h+— 91 N+
12 += 52 ht+= 92 n+=
13 = 53 Ht+= 93 =
14 +0g 54 B+ 94 A+
15 +a 55 h+h 95 h+a
16 +7X 56 A+ 96 1 Fn AN
17 +t 57 B+t 97 ht+t
18 +J\ 58 H+/\ 98 At/\
19 +7 59 A+ 99 At+h
20 —_+ 60 Nt 100 = |
21 1 61 Nt— 101 —FJ/E—
22 —_+= 62 N 102 —FEC
23 —_+= 63 NT= 103 —/EE=
24 ~—+m 64 A~ 104 —HBHEMN
25 _+h 65 ~NthR 105 —FER
26 S N 66 N7 106 —EEN
27 —t+t 67 At 107 —ESL
28)\ 68 Nt/ 18 —EBF/N
29 iy o | R N 109 —BEFN
30 = 70 ++ 116 —JF—+
31 =t 71 +t+— 111 —F—1+—
32 =+= 72 +t+= 112 —H5—1=
33 == 73 +t+= 113 —F—+=
34 =+ 74 t+lm 114 —B—+0
35 =+h 75 +t+7 115 —BH5—1+HA
36 =t 76 t+x 116 —FH—17<
37 =t 77 +t+t 117 —H—++
38 =t+J\ 78 t+/\ 118 —B—+/\
39 =+ 79 tth 119 —B—th
40 9+ 80 J\+ 120 —FB=+

7.2. Ethiopic Numeric Counter Style: ‘ethiopic-numeric’

The ‘ethiopic-numeric’ counter style is defined for all positive non-zero numbers. The following
algorithm converts decimal digits to ethiopic numbers:
1. If the number is 1, return "&" (U+1369).
2. Split the number into groups of two digits, starting with the least significant decimal digit.
3. Index each group sequentially, starting from the least significant as group number zero.

4. If the group has the value zero, or if the group is the most significant one and has the value 1, or
if the group has an odd index (as given in the previous step) and has the value 1, then remove the

digits (but leave the group, so it still has a separator appended below).

5. For each remaining digit, substitute the relevant ethiopic character from the list below.

Tens Units
Values Codepoints Values Codepoints
10 1 U+1372 1) U+1369
20 y U+1373 2 3 U+136A
30) U+1374 3 r U+136B
40 % U+1375 4 0 U+136C
50 q U+1376 5 & U+136D
60 = U+1377 6 7 U+136E
70 @ U+1378 7 7 U+136F
80 ™ U+1379 8 T U+1370
90 1] U+137A 9 g U+1371

6. For each group with an odd index (as given in the second step), except groups which originally
had a value of zero, append ? U+137B.

7. For each group with an even index (as given in the second step), except the group with index 0,
append e U+137C.

8. Concatenate the groups into one string, and return it.

For this system, the name is "ethiopic-numeric", the ‘range’ is ‘1 infinite’, the ‘suffix’ is "/
(U+002F SOLIDUS followed by a U+0020 SPACE), and the rest of the descriptors have their initial

value.

EXAMPLE 14
The decimal number 100, in ethiopic, is ¢ U+137B

The decimal number 78010092, in ethiopic, is @LPasee1e U+1378 U+1370 U+137B U+1369
U+137C U+137A U+136A.

The decimal number 780100000092, in ethiopic, is @Teaeeeeqe U+1378 U+1370 U+137B
U+1369 U+137C U+137C U+137A U+136A.

8. Additional “Ready-made” Counter Styles

The Internationalization Working Group maintains a large list of ready-made ‘(@counter-style’ rules

for various world languages in their Ready-made Counter Styles document.

[predefined-counter-styles]

These additional counter styles are not intended to be supported by user-agents by default, but can be

used by users or authors copying them directly into style sheets.

9. APIs

9.1. Extensions to the CSSRule interface

The CSSRule interface is extended as follows:

partial interface CSSRule {
const unsigned short COUNTER_STYLE_RULE = 11;

}s

9.2. The CSSCounterStyleRule interface

The CSSCounterStyleRule interface represents a ‘(@counter-style’ rule.

[Exposed=Window]

interface CSSCounterStyleRule : CSSRule {
attribute CSSOMString name;
attribute CSSOMString system;
attribute CSSOMString symbols;
attribute CSSOMString additiveSymbols;
attribute CSSOMString negative;
attribute CSSOMString prefix;
attribute CSSOMString suffix;

attribute CSSOMString range;
attribute CSSOMString pad;
attribute CSSOMString speakAs;
attribute CSSOMString fallback;

}s

name, of type CSSOMString
The name attribute on getting must return a CSSOMString object that contains the serialization of

the <counter-style-name> defined for the associated rule.

On setting the name attribute, run the following steps:

1. If the value is an ASCII case-insensitive match for any of the predefined counter styles,

lowercase it.

2. If the value is not "decimal", "disc", or "none", replace the associated rule’s name with an

identifier equal to the value.

3. Otherwise, do nothing.

system, of type CSSOMString
symbols, of type CSSOMString

additiveSymbols, of type CSSOMString
negative, of type CSSOMString
prefix, of type CSSOMString

suffix, of type CSSOMString

range, of type CSSOMString

pad, of type CSSOMString

speakAs, of type CSSOMString
fallback, of type CSSOMString

The remaining attributes on getting must return a CSSOMString object that contains the

serialization of the associated descriptor defined for the associated rule. If the descriptor was not

specified in the associated rule, the attribute must return an empty string.

On setting, run the following steps:

1. Parse a list of component values from the value.

2. If the returned value is invalid according to the given descriptor’s grammar, or would cause

the ‘(@counter-style’ rule to become invalid, do nothing and abort these steps. (For example,

some systems require the ‘symbols’ descriptor to contain two values.)

3. If the attribute being set is system, and the new value would change the algorithm used, do
nothing and abort these steps. || It’s okay to change an aspect of the algorithm, like the first

symbol value of a ‘fixed’ system.

4. Set the descriptor to the value.

10. Sample style sheet for HTML

This section is informative, not normative. HTML itself defines the styles that apply to its elements,

and in some cases defers to the user agent’s discretion.

details > summary {
display: list-item;
list-style: disclosure-closed inside;

}

details[open] > summary {
list-style: disclosure-open inside;

}

Changes

Changes since the December 2017 Candidate Recommendation
Significant changes since the December 14 2017 Candidate Recommendation:

e Made ‘none’, ‘decimal’, ‘disc’, ‘circle’, ‘square’, ‘disclosure-open’, ‘disclosure-close’ non-
overridable. (Issue 3584)

¢ Clarified counter-style lookups in Shadow DOM. (Issue 5693)

¢ Clarified what happens in various invalid ‘(@counter-style’ situations. (Issue 5698, Issue 5717)

¢ Fixed divide-by-zero error in additive algorithm. (Issue 5784)
¢ Fixed ‘square’ symbol to not use an emoji symbol. (Issue 6200)

¢ Allowed UAs to override the font choice of predefined symbolic counter styles. (Issue 6201)

¢ Restricted special rendering of predefined symbolic counter styles to usage as a list marker via
‘list-style-type’. (Issue 6201)

o C(Clarified that ‘speak-as’ represents spoken output; it may be used for other AT. (Issue 6040)

A counter style can be constructed with a meaning that is obvious visually, but impossible to
meaningfully represent via a speech synthesizer or other non-visual means, or possible but
nonsensical when naively read out loud . The ‘speak-as’ descriptor describes how to
synthesize the spoken form of a counter formatted with the given counter style. Assistive

technologies should use this spoken form when reading out the counter style, and may use the

‘speak-as’ value to inform transformations to outputs other than speech.

A Disposition of Comments is available.

Changes since the June 2015 Candidate Recommendation
Significant changes since the June 11 2015 Candidate Recommendation:

¢ Exclude ‘none’ and ‘disc’ from being the name of a counter style.

e When setting CSSCounterStyle.name, take the string directly; don’t parse it as an ident.
¢ Clarify that counter styles are read out in the element’s content language.

¢ Clarified that ‘additive-symbols’ tuples must be of strictly decreasing weight.

e Specified that invalid values just invalidate the declaration, not the whole rule.

e ‘(@counter-style’ rules that are invalid due to missing descriptors just fail to create a counter style;

they’re otherwise still valid rules.

¢ Changed syntax to use CSS bracketed range notation to reflect the prose restrictions on negative

values.

A Disposition of Comments is available.

Changes since the Feb 2015 Candidate Recommendation

¢ Allowed UAs to extend the ‘hebrew’ style past the spec-defined limits (since the current limits

are mostly just an artifact of how annoying it is to go higher with the ‘@counter-style’-based

definition).

Acknowledgments

The following people and documentation they wrote were very useful for defining the numbering
systems: Alexander Savenkov, Arron Eicholz, Aryeh Gregor, Christopher Hoess, Daniel Yacob, Frank
Tang, Jonathan Rosenne, Karl Ove Hufthammer, Musheg Arakelyan, Nariné¢ Renard Karapetyan,
Randall Bart, Richard Ishida, Simon Montagu (Mozilla, smontagu@smontagu.org)

Special thanks to Xidorn Quan for extensive reviews of all aspects of the spec, and also to Simon

Sapin and Hakon Wium Lie for their review comments.

Privacy and Security Considerations

This specification introduces no new privacy or security considerations.

Conformance

Document conventions

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119
terminology. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,

“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative
parts of this document are to be interpreted as described in RFC 2119. However, for readability, these

words do not appear in all uppercase letters in this specification.

All of the text of this specification is normative except sections explicitly marked as non-normative,
examples, and notes. [REFC2119

Examples in this specification are introduced with the words “for example” or are set apart from the

normative text with class="example", like this:

EXAMPLE 15

This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the normative text with

class="note", like this:

Note, this is an informative note.

Advisements are normative sections styled to evoke special attention and are set apart from other

normative text with <strong class="advisement">, like this:

UAs MUST provide an accessible alternative.

Conformance classes

Conformance to this specification is defined for three conformance classes:

style sheet
A CSS style sheet.

renderer
A UA that interprets the semantics of a style sheet and renders documents that use them.

authoring tool
A UA that writes a style sheet.

A style sheet is conformant to this specification if all of its statements that use syntax defined in this
module are valid according to the generic CSS grammar and the individual grammars of each feature
defined in this module.

A renderer is conformant to this specification if, in addition to interpreting the style sheet as defined
by the appropriate specifications, it supports all the features defined by this specification by parsing
them correctly and rendering the document accordingly. However, the inability of a UA to correctly
render a document due to limitations of the device does not make the UA non-conformant. (For

example, a UA is not required to render color on a monochrome monitor.)

An authoring tool is conformant to this specification if it writes style sheets that are syntactically
correct according to the generic CSS grammar and the individual grammars of each feature in this

module, and meet all other conformance requirements of style sheets as described in this module.

Partial implementations

So that authors can exploit the forward-compatible parsing rules to assign fallback values, CSS

renderers must treat as invalid (and ignore as appropriate) any at-rules, properties, property values,

keywords, and other syntactic constructs for which they have no usable level of support. In particular,
user agents must not selectively ignore unsupported component values and honor supported values in
a single multi-value property declaration: if any value is considered invalid (as unsupported values

must be), CSS requires that the entire declaration be ignored.

Implementations of Unstable and Proprietary Features

To avoid clashes with future stable CSS features, the CSSWG recommends following best practices
for the implementation of unstable features and proprietary extensions to CSS.

Non-experimental implementations

Once a specification reaches the Candidate Recommendation stage, non-experimental
implementations are possible, and implementors should release an unprefixed implementation of any

CR-level feature they can demonstrate to be correctly implemented according to spec.

To establish and maintain the interoperability of CSS across implementations, the CSS Working Group
requests that non-experimental CSS renderers submit an implementation report (and, if necessary, the
testcases used for that implementation report) to the W3C before releasing an unprefixed
implementation of any CSS features. Testcases submitted to W3C are subject to review and correction
by the CSS Working Group.

Further information on submitting testcases and implementation reports can be found from on the CSS
Working Group’s website at https://www.w3.org/Style/CSS/Test/. Questions should be directed to the

public-css-testsuite@w3.org mailing list.

CR exit criteria

For this specification to be advanced to Proposed Recommendation, there must be at least two
independent, interoperable implementations of each feature. Each feature may be implemented by a
different set of products, there is no requirement that all features be implemented by a single product.

For the purposes of this criterion, we define the following terms:

independent
each implementation must be developed by a different party and cannot share, reuse, or derive

from code used by another qualifying implementation. Sections of code that have no bearing on

the implementation of this specification are exempt from this requirement.

interoperable
passing the respective test case(s) in the official CSS test suite, or, if the implementation is not a

Web browser, an equivalent test. Every relevant test in the test suite should have an equivalent
test created if such a user agent (UA) is to be used to claim interoperability. In addition if such a
UA is to be used to claim interoperability, then there must one or more additional UAs which can
also pass those equivalent tests in the same way for the purpose of interoperability. The

equivalent tests must be made publicly available for the purposes of peer review.

implementation
a user agent which:

1. implements the specification.

2. is available to the general public. The implementation may be a shipping product or other
publicly available version (i.e., beta version, preview release, or "nightly build"). Non-
shipping product releases must have implemented the feature(s) for a period of at least one

month in order to demonstrate stability.

3. is not experimental (i.e., a version specifically designed to pass the test suite and is not

intended for normal usage going forward).

The specification will remain Candidate Recommendation for at least six months.

§ Index

Terms defined by this specification

additive, in §3.1.6 cjk-decimal, in §6.1
additive-symbols, in §3.8 cjk-earthly-branch, in §6.4
additiveSymbols, in §9.2 cik-heavenly-stem, in §6.4
additive tuple, in §3.8 cjk-ideographic, in §7.1.3
alphabetic, in §3.1.4 <counter-style>, in §5
arabic-indic, in §6.1 (@counter-style, in §3
armenian, in §6.1 counter style, in §2
auto <counter-style-name>

value for @counter-style/range, in §3.5 (type), in §3

value for @counter-style/speak-as, in §3.9 value for @counter-style/speak-as, in §3.9
bengali, in §6.1 COUNTER_STYLE_RULE, in §9.1
box-corner, in §3.1.2 counter symbol, in §3.8
bullets, in §3.9 CSSCounterStyleRule, in §9.2
cambodian, in §6.1 cyclic, in §3.1.1
circle, in §6.3 decimal, in §6.1

circled-lower-latin, in §3.9 decimal-leading-zero, in §6.1

devanagari, in §6.1
dice, in §3.1.6
disc, in §6.3

disclosure-closed, in §6.3

disclosure-open, in §6.3

ethiopic-numeric, in §7.2

extends, in §3.1.7

fallback
attribute for CSSCounterStyleRule, in §9.2

descriptor for @counter-style, in §3.7

first symbol value, in §3.1.2

fixed, in §3.1.2
footnote, in §3.1.3

generate a counter, in §2

generate a counter representation, in §2

georgian, in §6.1

g0, 1n §3.1.4

gujarati, in §6.1
gurmukhi, in §6.1
hebrew, in §6.1
hiragana, in §6.2
hiragana-iroha, in §6.2

initial representation for the counter value, in

§2

japanese-formal, in §7.1.1

japanese-informal, in §7.1.1
kannada, in §6.1

katakana, in §6.2
katakana-iroha, in §6.2

khmer, in §6.1

korean-hangul-formal, in §7.1.2

korean-hanja-formal, in §7.1.2

korean-hanja-informal, in §7.1.2

lao, in §6.1

lower-alpha, in §6.2

lower-armenian, in §6.1

lower-greek, in §6.2
lower-latin, in §6.2
lower-roman, in §6.1
malayalam, in §6.1
mongolian, in §6.1
myanmar, in §6.1

name, in §9.2

negative
attribute for CSSCounterStyleRule, in §9.2

descriptor for (@counter-style, in §3.2

numbers, in §3.9
numeric, in §3.1.5
oriya, in §6.1

pad
attribute for CSSCounterStyleRule, in §9.2

descriptor for @counter-style, in §3.6

persian, in §6.1

prefix

attribute for CSSCounterStyleRule, in §9.2

descriptor for (@counter-style, in §3.3

range

attribute for CSSCounterStyleRule, in §9.2

descriptor for @counter-style, in §3.5

simp-chinese-formal, in §7.1.3

simp-chinese-informal, in §7.1.3

speak-as, in §3.9
speakAs, in §9.2
spell-out, in §3.9
square, in §6.3

suffix
attribute for CSSCounterStyleRule, in §9.2

descriptor for @counter-style, in §3.4

<symbol>, in §3.8
symbolic, in §3.1.3

symbols

attribute for CSSCounterStyleRule, in §9.2

descriptor for @counter-style, in §3.8

symbols(), in §4

<symbols-type>, in §4

system
attribute for CSSCounterStyleRule, in §9.2

descriptor for @counter-style, in §3.1

tamil, in §6.1

Terms defined by reference

[css-cascade-5] defines the following terms:

computed value

[css-content-3] defines the following terms:

content
[css-images-3] defines the following terms:
<image>

default object size

telugu, in §6.1
thai, in §6.1
tibetan, in §6.1

trad-chinese-formal, in §7.1.3

trad-chinese-informal, in §7.1.3
triangle, in §3.1.1

trinary, in §3.1.5

upper-alpha, in §6.2

upper-alpha-legal, in §3.1.3

upper-armenian, in §6.1

upper-latin, in §6.2
upper-roman, in §6.1

use a negative sign, in §3.2

uses a negative sign, in §3.2

words, in §3.9

[CSS-LISTS-3] defines the following terms:

counter()
counters()
inside
list-style
list-style-type
none

[css-pseudo-4] defines the following terms:

::marker
[css-scoping-1] defines the following terms:
tree-scoped name

tree-scoped reference

[css-syntax-3] defines the following terms:

<declaration-list>

at-rule

parse

parse a list of component values
[css-text-3] defines the following terms:

content language

grapheme cluster

[css-text-decor-4] defines the following terms:

symbols

[css-values-3] defines the following terms:

identifier

[css-values-4] defines the following terms:
#
&&

+
<custom-ident>

<integer>

<string>

?

css bracketed range notation

css-wide keywords
{a}
|

References

Normative References

[CSS-CASCADE-5]

[css-writing-modes-4] defines the following
terms:

writing mode
[cssom-1] defines the following terms:
CSSOMString
CSSRule
[HTML] defines the following terms:

details

[INFRA] defines the following terms:
ascii case-insensitive
continue

[WebIDL] defines the following terms:
Exposed

unsigned short

Elika Etemad; Miriam Suzanne; Tab Atkins Jr.. CSS Cascading and Inheritance Level 5. 8 June
2021. WD. URL: https://www.w3.org/TR/css-cascade-5/

[CSS-IMAGES-3]

Tab Atkins Jr.; Elika Etemad; Lea Verou. CSS Images Module Level 3. 17 December 2020. CR.

URL.: https://www.w3.org/TR/css-images-3/

[CSS-LISTS-3]
Elika Etemad; Tab Atkins Jr.. CSS Lists and Counters Module Level 3. 17 November 2020. WD.

URL: https://www.w3.org/TR/css-lists-3/

[CSS-SCOPING-1]
Tab Atkins Jr.; Elika Etemad. CSS Scoping Module Level 1. 3 April 2014. WD. URL:
https://www.w3.org/TR/css-scoping-1/

[CSS-SYNTAX-3]
Tab Atkins Jr.; Simon Sapin. CSS Syntax Module Level 3. 16 July 2019. CR. URL:
https://www.w3.org/TR/css-syntax-3/

[CSS-TEXT-3]
Elika Etemad; Koji Ishii; Florian Rivoal. CSS Text Module Level 3. 22 April 2021. CR. URL:
https://www.w3.org/TR/css-text-3/

[CSS-TEXT-DECOR-4]
Elika Etemad; Koji Ishii. CSS Text Decoration Module Level 4. 6 May 2020. WD. URL:
https://www.w3.org/TR/css-text-decor-4/

[CSS-VALUES-3]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 3. 6 June 2019. CR. URL:
https://www.w3.org/TR/css-values-3/

[CSS-VALUES-4]
Tab Atkins Jr.; Elika Etemad. CSS Values and Units Module Level 4. 15 July 2021. WD. URL.:
https://www.w3.org/TR/css-values-4/

[CSS-WRITING-MODES-4]
Elika Etemad; Koji Ishii. CSS Writing Modes Level 4. 30 July 2019. CR. URL:
https://www.w3.org/TR/css-writing-modes-4/

[CSS21]
Bert Bos; et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. 7 June 2011.
REC. URL: https://www.w3.org/TR/CSS21/

[CSSOM-1]
Simon Pieters; Glenn Adams. CSS Object Model (CSSOM). 17 March 2016. WD. URL.:
https://www.w3.org/TR/cssom-1/

[HTML]
Anne van Kesteren; et al. HTML Standard. Living Standard. URL:

https://html.spec.whatwg.org/multipage/

[INFRA]
Anne van Kesteren; Domenic Denicola. Infra Standard. Living Standard. URL:

https://infra.spec.whatwg.org/

[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best
Current Practice. URL: https://datatracker.ietf.org/doc/html/rfc2119

[WebIDL)]
Boris Zbarsky. Web IDL. 15 December 2016. ED. URL: https://heycam.github.io/webidl/

Informative References

[CSS-CONTENT-3]
Elika Etemad; Dave Cramer. CSS Generated Content Module Level 3. 2 August 2019. WD.

URL: https://www.w3.org/TR/css-content-3/
[CSS-PSEUDO-4]
Daniel Glazman; Elika Etemad; Alan Stearns. CSS Pseudo-Elements Module Level 4. 31
December 2020. WD. URL: https://www.w3.org/TR/css-pseudo-4/
[PREDEFINED-COUNTER-STYLES]
Richard Ishida. Ready-made Counter Styles. 9 June 2021. NOTE. URL.:
https://www.w3.org/TR/predefined-counter-styles/

Property Index

No properties defined.

‘@counter-style’ Descriptors

Name Value Initial
‘additive-
4 ; llvf [<integer [0,00]> && <symbol> |# n/a
symbols
“fallback’ <counter-style-name> decimal
‘negative’ <symbol> <symbol>? "\2D" ("-" hyphen-minus)
‘pad’ <integer [0,0]> && <symbol> o
‘prefix’ <symbol> "" (the empty string)
‘range’ [[<integer> | infinite]{2} [# | auto auto
‘speak-as’ auto | bullets | numbers | words | spell-out | <counter-style-name> auto
"M2E\20" ("." full st
‘suffix’ <symbol> ("." full stop
followed by a space)

Name Value Initial
‘symbols’ <symbol>+ n/a

. s cyclic | numeric | alphabetic | symbolic | additive | [fixed <integer>?] | [.
system symbolic

extends <counter-style-name> |

§ IDL Index

partial interface CSSRule {
const unsigned short COUNTER_STYLE RULE = 11;

}s

[Exposed=Window]
interface CSSCounterStyleRule : CSSRule {

}s

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

CSSOMString

name;

CSSoMString

system;

CSSoMstring

symbols;

CSSOMString

additiveSymbols;

CSSOMString negative;

CSSoMString

prefix;

CSSoMString

suffix;

CSSOMString range;
CSSOMString pad;

CSSsoMString

CSSOMString

speakAs;
fallback;

